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ABSTRACT
Our internal experience of time reflects what is going in the world
around us. Our body’s natural rhythms get disrupted for a vari-
ety of external factors, including exposure to collective events. We
collect readings of steps, sleep, and heart rates from 11K users of
health tracking devices in London and San Francisco. We introduce
measures to quantify changes in not only volume of these three
bio-signals (as previous research has done) but also synchronic-
ity and periodicity, and we empirically assess how strong those
variations are, compared to random expectation, during four major
events: Christmas, New Year’s Eve, Brexit, and the US presidential
election of 2016 (Donald Trump’s election). While Christmas and
New Year’s eve are associated with short-term effects, Brexit and
Trump’s election are associated with longer-term disruptions. Our
results promise to inform the design of new ways of monitoring
population health at scale.
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1 INTRODUCTION
Our body pulses in cycles: we sleep or waken, are hungry or full, are
alert or tired. The most dominant period in a person’s rhythms is
the circadian cycle. Major departures from the normal range of the
period have been associated with endogenous factors (e.g., illness)
or exogenous ones (e.g., an external event inducing fear). Previ-
ous work has explored the relationship between circadian cycles
and external factors, linking prolonged disruption of rhythms to
pathological conditions, including cancer [18, 21]. Nowadays, “the
alternation of sleep and walking and all the bodily cycles attendant
on those states” [13] can be measured based on the use of social me-
dia [1, 6, 25], of augmented-reality games [3, 9], and, more reliably,
of activity trackers [2, 19].

Yet, previous research has rarely ventured into: i) studying ac-
tivity metrics beyond their volume; and ii) linking these metrics’
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changes to global events. This study aims at exploring these two
aspects for the first time, and it does so by relying on large-scale
data collected data from Nokia Health monitoring devices used
by 11,600 customers who live in London (67% of users) and San
Francisco (33%) over the course of 1 year (from 1st April 2016 to
30th April 2017). Our users are 44% female, and their median age is
42 years. All users opted-in for research studies, and their data has
been processed in an anonymized form. We consider three types of
activities: total number of steps walked during the day; sleep dura-
tion measured in number of minutes slept at night; the estimated
sleep time when the user went to bed for the night (hour and min-
utes, adjusted for timezone); and the average heart rate (beats per
minute) measured once per day. Steps and sleep are measured by
Nokia Health devices (e.g., former Withings wristbands and smart
watches). All activities are measured at daily level for each user.
For heart rates, when multiple measurements are available on the
same day, we average them out. Our users represent a sample of
the larger user population and are selected based on the number of
days they used their devices: indeed, to reduce sparsity, we consider
users who, for at least 90% of the days, measured their heart rates.
This leaves us with 3.8M+ daily activity summaries.

By drawing from previous physiological and psychological stud-
ies, we derive metrics that relate walking, sleeping, and heartbeat to
well-being. We characterize those three activities in terms of their
volume (the raw value of the signal over time, §2), synchronicity
(the degree to which the cycles of different people are in phase,
§3) and rhythm (the activity periodicity, §4). We show how these
metrics vary over the entire year, and how such variations repre-
sent distinctive signatures for four collective events: Christmas,
New Year’s Eve, Brexit, and the US election of 2016. We find that
users slept more than usual during the Christmas period and, as
one expects, slept less than usual during Brexit, the US election,
and New Year’s eve. Brexit and the US election are also associated
with long-term disruptions in two main ways. First, in terms of
sleeping patterns: users became heavily out-of-sync in the weeks
after Brexit and even more so after the US election. Second, in
terms of heart rates, we found major shifts in rhythm and volume,
especially in the months around the US presidential election. These
results suggest that our three metrics effectively capture how our
biorhythms change during large-scale events, opening up newways
of monitoring population health at scale1.

2 VOLUME
The amount of steps, hours of sleep and the dynamics behind heart
rates have all been related to health outcomes. Physical activity
boosts the levels of immune cells, and that results in a consider-
able reduction of sick days – from children to elderlies [15]. Sleep
1Additional material is on http://goodcitylife.org/health
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Figure 1: Daily average number of steps, hours slept, and heart rate (with 95% confidence interval). The dates of the following
four events are marked by horizontal lines (left to right): the Brexit referendum, the US presidential election, Christmas and
New Year’s Eve.

deprivation has been found to make people accident-prone on the
road, unproductive at work [27], and subject to brain aging [8, 27].
Sleep deprivation also increases the chances of ailments such as hy-
pertension [23], cancer [5], diabetes, and obesity [16], and, as such,
increases mortality rates [7]. In this work, to capture the amount of
steps, sleep, and heart rates, given the measurement of an activity
A (e.g., steps), we denote the activity of user u on day t with Au (t),
and compute the average activity during day t at population level
as A(t) =

∑
u∈U Au (t )

|U |
.

In Figure 1, we plot the average daily number of steps, hours of
sleep, and heart rates for thewhole year. The plots of steps and hours
of sleep are spiky, and that comes from our typical weekly patterns:
during weekends, people usually walk less and sleep more. Some of
the spikes are much more prominent than the others though, and
correspond to four major events (marked with dashed lines in the
plots): the “Brexit” referendum in which the UK electorate voted to
leave the EU on the 23th of June 2016, the US presidential election
on the 8th of November 2016, and Christmas and New Year’s Eve
of the same year. For steps (first plot in Figure 1), there are two
low points, which correspond to Christmas and New Year’s Eve.
For hours of sleep (second plot), there are three low points, which
correspond to Brexit, the US election, and New Year’s Eve. Finally,
for heart rates (third plot), there are a few peaks and low points
but they are limited – the most remarkable trend is represented by
a considerable collective increase of heart rate just around the US
election. These results might suggest that increases in heart rates
are in a cause-and-effect relationship with the US election. How-
ever, before considering causation, we need to rule out alternative
explanations:
New users. If new users are suddenly introduced in the sample,
heart rate volume could increase. That does not apply to our case
since, for the whole duration of the year, we study the very same
set of users whose heart rate is monitored almost continuously
throughout the year (90%+ of the days).
Software/hardware update. Device and software updates might im-
pact measurements. During the year of observation, our devices’
software that measured heart rates did not change, and all measure-
ments showed high consistency.
Physical Activity. Heart rates could increase as a result of increased
physical activity. However, there was no substantial change in daily
number of steps at the time of the US election (a person did, on

average, 6794 steps a day in October, 6750 in November, and 6660
in December).
Temperature. In coldweather, to keep the bodywarm, the heart beats
faster. The temperature in the months concerning the US election
was stable (Figure 2D), ruling out temperature as co-founding factor.
Seasonality. People’s rhythms are seasonal [1]. However the ob-
served heart rate increases are steady and are not seasonal. If they
were, given the comparable weather conditions (Figure 1), the heart
rate levels in April 2016 would be the comparable to those in April
2017 – but they are not.

Upon observational data, it is hard to argue what caused heart
rate increases. However, the strongest association appears to be
with the US election, and that is because of three main reasons:
(i) Alternative Explanations. We have just ruled out the most plausi-
ble explanations other than the US election.
(ii) External Validity. Increases in heart rates have been found to
be associated with emotional regulation and stress [10, 22, 24].
It should come as no surprise that the US election caused (self-
reported) stress in a considerable part of the electorate. Based
on a representative sample on 1,000+ US residents, a survey com-
missioned by the American Psychological Association found that
more than half of the interviewees experienced the political cli-
mate around the presidential campaign as a significant source of
stress [4].
(iii) Dose-response relationships. Dose-response patterns on observa-
tional data are necessary (but not sufficient) for considering causa-
tion. In our case, we indeed observe that events are strongly linked
to biorhythm responses. To see how, contrast Londoners with San
Franciscans: San Franciscans experienced rapid heart rate increases
the last two months of the US political campaign (Figure 2C), expe-
rienced a peak exactly on the election day, and slept the least during
the US election night (Figure 2B); by contrast, Londoners slept less
the night after Brexit (Figure 2A), and started to experience heart
rate increases on the US election day (Figure 2C), suggesting that
their response was shifted compared to the US counterpart, as one
expects. Therefore, dose-response relationships are observed for
both the US election and Brexit.

3 SYNCHRONICITY
So far we have captured the volume of steps, hours slept, and heart
rates. To go beyond volume, we now focus on temporal patterns.

2
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Figure 2: (A) Number of hours slept in the weeks around
Brexit. (B) Number of hours slept for the US presidential
election. (C) Average heart rate around the US presidential
election. (D) Temperature changes for the US presidential
election (the average temperature curve is enclosed within
the min and max curves).

The timing of behavior has always been a strong expression of the
style of individuals and entire populations [13]. Nowadays that
timing can be reliably captured by smart devices. Our sleep data,
for example, includes the time at which users go to bed every day.
This can be interpreted as an ordered sequence of timestamps,
which is also called spike train. For the purpose of this study, we
are interested in measuring the degree of synchronization between
two users, that is, between two spike trains s1 = {t

(1)
1 , ..., t

(1)
n } and

s2 = {t
(2)
1 , ..., t

(2)
m }, within an interval [0,T ] of, say, one year. The

SPIKE-distance functionDS provides a parameter-free way of doing
that [14]. It is defined as the integration of an instantaneous spike
function S(t) over time: DS (0,T ) = 1

T

∫ T
0 S(t)dt ∈ [0, 1].

The spike function at time t is defined as:

S(t) =
|∆tP (t)| · ⟨x

(n)
F (t)⟩n + |∆tF (t)| · ⟨x

(n)
P (t)⟩n

⟨ISI ⟩n
(1)

where ∆tP (t) is the difference between the two spikes t (1)P (t) and
t
(2)
P (t) that immediately precede time t in the two trains; ∆tF (t) is
the difference between the spikes following t ; x (n)P (t) is the distance
between t and the previous spike in the nth train; ISI (n) is the
mean inter-spike interval in the nth train; and ⟨•⟩n denotes the
average over the two trains. When DS = 0, the two trains have
no distance between them, meaning that their spikes are perfectly
synchronized; when DS = 1, the two trains are completely out-of-
phase. The formulation of DS for the bivariate distance (for 2 users)
can be extended to a multivariate case (for 2+ users) by averaging
the distances of all the pairs of spike trains in the set. We compute
that quantity and denote it with DS .
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Figure 3: (A) Frequency distribution of the spike distanceDS
over the whole population during the full year. The tail (the
set of points that are 2 standard deviations away from the
median) ismarkedwith a solid blue area under the curve. (B)
Out-Of-Sync score (OOS) for the four events plus the random
model computed with a 95% confidence interval. (C) Out-Of-
Sync population growth (OOS↑) for the four events plus the
random model computed with a 95% confidence interval.

Each user’s sleep patterns for the entire year have been con-
verted into a spike train. This consists of the sequences of times at
which the user went to sleep. The level of de-synchronization in the
population is then computed as the average spike distance score DS
over all user pairs. Even if theoretically bounded in [0, 1], the DS
variable takes values from 0 to 10−4 in our data (Figure 3A). That is
because DS is quite low for events influenced by exogenous events
(e.g., it is rare to find a considerable number of people who sleep
in the middle of the afternoon). To quantify the extent to which
synchronization changes after each of our four events, we compare
the average spike distance DS over all user pairs in the week before
the event, and in the week after the event. More formally, we define
the Out-Of-Sync score (OOS) of an event e occurring at time t as
OOSe@t = DS (t , t + α) − DS (t − α , t),

where t is the time of event e , and α is a buffer time window,
which, in our case, we set to be of one week. If the event’s score
is above zero, then this means that, after the event, the population
became, on average, less synchronized. If it is below zero, then
the population became more synchronized. To make sure that an
event’s score is not due to chance, we contrast it to a null/random
model, that is, we contrast it to what the score would be if computed
at random days. More specifically, we compute OOS with α of one
week at 100 random days along the whole year, obtaining 100 scores.
We then average those scores out to obtain the random model’s
score, which is supposed to be zero. By definition, the accuracy
of the DS measure (and, consequently, that of OOS) suffers in the
presence of missing data points, which is the case for our data,
since our devices are not perfectly reliable. As such, to get robust
measurements, we filter out all users whose spike trains are not
complete in the weeks before each event, and in the weeks after it.

3
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This step turns out to exclude at most a few hundred individuals
for each event.

After this filtering, we compute the out-of-synch scoresOOS . We
find that, at random days, the scores are close to 0, as one expects. By
contrast, the scores are subject to changes during three of our four
events. More specifically, they do not change in a statistically signifi-
cant way during Christmas, but they do considerably change during
New Year’s Eve, Brexit, and the US election, suggesting that several
users became out-of-sync after these three events (Figure 3B). To
quantify the fraction of the population who slipped considerably
out-of-sync after each event, we consider the frequency distribution
of out-of-sync scores (Figure 3A): its right tail represents those user
pairs who are heavily out-of-sync with each other. Using a standard
practice in outlier identification [12], we consider all the points that
are at least 2 standard deviations (2σ ) higher than the median (µ̃)
as outliers: outliers(DS (t , t + α)) =

∫ 1
µ̃+2σ fDS (t,t+α )(x)dx ,

where α is the considered time window (i.e., one week), and f is
the probability density function computed for the variable DS in
the time period [t , t + α]. To then measure the impact of an event
e , we compute the value for the previous expression of outliers()
after e minus its value before e , and normalize the result:

OOS
↑

e@t =
outliers(DS (t , t + α)) − outliers(DS (t , t − α))

outliers(DS (t , t − α))
(2)

The resulting value is the Out-Of-Synch population growth (OOS↑):
it is the relative increase in the portion of user pairs that are heavily
out-of-sync. From Figure 3C, one sees that the value increased by
10% after New Year’s Eve and Brexit, and by as much as 30% after
the US election. The random baseline shows no increase.

4 RHYTHMS
As a final metric, we consider circadian rhythm. This is a roughly 24
hour cycle in the physiological processes of living beings, including
humans. Although circadian rhythms are endogenous (“built-in”),
they are adjusted to the local environment by external cues such as
light and temperature. Disruptions in a person’s circadian rhythm
for sleep and heart rates have been found to have negative health
consequences [20] and lead to pathological conditions [18, 21]. To
see how to track circadian rhythms on our data of sleep patterns
and heart rates, consider that any activity signal over time can
be interpreted as a time series, an ordered sequence of activity
measurements. To extract the period of an activity time series,
one can use the Discrete Fourier Transform. This decomposes the
temporal signal into a number of discrete frequencies which, if
recombined, compose the original signal. The Power Spectral Density
(PSD) is the distribution of relative power of those frequencies; we
extract it using the Welch method [26]. To make the results more
interpretable, we transform the frequencies of the PSD into periods
(period(PSD)), which denote the amplitudes of the wave originated
by those frequencies, expressed in number of days (e.g., a period of 7
days denotes a weekly pattern). More formally, given a useru’s time
series in a period [t1, t2], we define its characteristic rhythm as the
period with the maximum PSD value in [t1, t2]: rhythmu (t1, t2) =
argmax(period(PSD(t1, t2))).

Our goal is to go beyond individual users and quantify the rhythm
shift associated with an event in the entire population. To this end,
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Figure 4: The frequency distributions of the rhythm shifts
for sleep and heart rates after Christmas and the US pres-
idential election. The KL-divergence between the observed
distribution and the random model’s is our rhythm disrup-
tion.

for any given event e that took place at time t , we first compute
the rhythm shift an individual user u experienced before and af-
ter the event, within a temporal window α : rhythm shiftu,e@t =

rhythmu (t , t + α) − rhythmu (t − α , t).
We then aggregate the rhythm shift values across all users by

computing their frequency distribution frhythm shifte@t . To make
sure our shift values are not due to chance, we resort to a null/random
model.We compute suchmodel’s score value by computing “rhythm
shift” scores for 100 random days: we first compute individual shift
scores around those days (rhythm shiftu,rand@t ), and then com-
pute the distribution over all users and days (frhythm shiftrand@t ).

Finally, to estimate the entire population’s rhythm disruption
associated with e , we compare the observed distribution for e
with the distribution for random days: rhythm disruptione@t =

DKL(frhythm shifte@t , frhythm shiftrand@t ). This is the KL divergence
between the two frequency distributions [11]. The higher it is, the
higher the rhythm shift that is associated with the event compared
to random expectation (zero for no shift).

Figure 4 shows the distribution of rhythm shift for sleep and
heart rates around Christmas and the US election. Each distribution
is shown together with the corresponding null/random model’s
distribution, and the difference between the observed distribution
and the random one (called ‘rhythm disruption’) is also reported
and denoted with “KL”. After Christmas and New Year’s Eve, the
shifts for both sleep and heart rates are limited. Instead, after the
US election and Brexit, the shift for sleep is considerable, and that
for heart rates is disruptive2.

5 CONCLUSION
Based on all the results, one might hypothesize that each of our
metrics could offer a way of profiling large-scale events. In reality,

2Due to page restrictions, we show the results for Christmas and the US election here
and invite the reader to visit http://goodcitylife.org/health for more.
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Event Volume OOS OOS↑ Rhythm
Disruption

Steps Sleep Heart Sleep Sleep Steps Sleep Heart
Brexit 7564 6.6 69.6 37·10−3 12% 0.06 0.37 9.61
US 7042 6.7 70.7 62·10−3 32% 0.43 7.53 11.5
Christmas 4531 7.7 71.5 -6·10−3 10% 0.13 0.17 1.85
New Year’s 5370 6.9 71.1 49·10−3 1% 0.12 0.17 1.64
Random 7129 7.2 71.4 49·10−3 0% 0.0 0.0 0.0

Table 1: Average values for each of our metrics for our four
events.
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Figure 5: Clusters of the days of the year under study based
on the volume and rhythm disruption for steps and sleep.
Each dot corresponds to a day, and the colors encode the
different (DBSCAN) clusters (black dots are outliers and, as
such, do not belong to any cluster). The days in which our
four main events happened are marked with labels. Values
on both axes are standardized.

no individual metric considered in separation would be sufficient.
For example, from Table 1, one can see that volume alone is not a
reliable marker for distinguishing the four events under considera-
tion: Brexit is indistinguishable from New Year’s Eve, for instance.
By contrast, considering our metrics in combination is sufficient
for distinguishing the four events. Indeed, by plotting the daily
average number of steps in a “rhythm disruption by volume” plot
(Figure 5A), the four events are separable (i.e., they form distinctive
clusters), suggesting that rhythm disruption and volume are, in our
case, reliable markers for event classification. The same applies to
daily average number of hours slept (Figure 5B). This is further
supported by a DBSCAN clustering of those points, which returns
a silhouette value (clustering quality value [17]) of ∼0.35.

Taken all together, our results are very promising, yet three main
limitations hold. First, our users are not representative of the general
population. Second, our metrics suffer from data sparsity and, to
be generalizable, they need to be furthered researched. Finally, our
results do not speak to causation. Still, despite those limitations and
based on the dose-response nature of the relationships between
events and biorhythm measurements, we can conclude that, with
our metrics at hand, one is able to capture “how we experience
time” in unobtrusive ways. Synchronization and rhythms seem to
be present in all living beings. They generally serve to keep the
inner organisms working and keep the body coordinated with the
external world. A failure of synchronization puts the body out-of-
sync and under stress. Nowadays smart health trackers are able to

capture that experience, and are able to do so at an unprecedented
scale.
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