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Abstract
With the focus that cities around the world have put on sustainable transportation
during the past few years, biking has become one of the foci for local governments
globally. Cities all over the world invest in biking infrastructure, including bike lanes,
bike parking racks, shared (dockless) bike systems etc. However, one of the critical
factors in converting city-dwellers to (regular) bike users/commuters is safety. In this
work, we utilize bike accident data from different cities to model the biking safety
based on street-level (geographical and infrastructural) features. Our evaluations
indicate that our model provides well-calibrated probabilities that accurately capture
the risk of a biking accident. We further perform cross-city comparisons in order to
explore whether there are universal features that relate to cycling safety. Finally, we
discuss and showcase how our model can be utilized to explore “what-if” scenarios
and facilitate policy decision making.
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1 Introduction
Transport engineers and urban planners have come to realize during the past few years
that if we are to realize the vision of smart cities, that is, cities that are livable, sustain-
able and resilient, we need to move away from the car-centric mobility and turn to more
sustainable modes of transportation. As a result cities have indeed turned to alternative
modes of transportation, while promoting multi-modal mobility. Bicycles offer a promis-
ing transportation alternative to private vehicles, especially in areas with congestion, poor
air quality, and high fuel prices [1]. Therefore, one of the major emphasis has been placed
on urban biking as an alternative mode of transportation [2]. As a result during the past
years the relevant infrastructure (e.g., bike lanes, bike parking racks, etc.) and services
(e.g., shared bike systems) have enjoyed a significant growth [3]. This investment has re-
sulted in an increased (perceived and/or actual) safety, either directly or through network
effects [4], which consequently has a positive feedback on the propensity of people to ride
a bicycle for their commute [5–9].

However, despite this increase in ridership the fraction of commuters that regularly use
bikes is still relatively small as compared to other modes of transportation [10]. It is thus,
important to understand what factors are related with bike safety and how we can make
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riding safer in a city. While there exists literature that aims at understanding through sur-
veys how people perceive biking safety,1 in this study we take a data-driven approach, using
bike accident data from the cities of London, Boston and Pittsburgh. We further collect
street-level features from OpenStreetMap that capture both the geography as well as, the
bike infrastructure on the streets of these cities. Using these data we build a model that
quantifies biking safety as the relative probability of a severe biking accident in a given
location. Our results indicate that the probability output of our models is well-calibrated
both when evaluated (i) on a test set from the same city that the model was trained on, as
well as, when evaluated (ii) on a dataset from a different city. The latter, i.e., a cross-city
study/evaluation, is a piece that is missing in many studies in the area of urban computing
and analytics despite its importance. If we are to really understand various urban phe-
nomena and their universal patterns (if any) across cities, similar cross-city analysis is
necessary.

In brief, our results indicate that the presence of (protected) bike lanes is associated with
a significant improvement in biking safety—as one might have expected. Furthermore, the
speed limit, street topology (straight/curved), and the distance from an intersection are
good predictors for the severity of a biking accident as well. While these results might not
be surprising, and in fact they might even be expected, our work quantifies these relation-
ships. This further enables their use in “what-if” analysis that can facilitate local govern-
ment decision making as we elaborate on later. In summary, the main contributions of our
work are:

• We develop a bike safety model using public bike accident and map datasets from 3
diverse cities.

• We perform a cross-city evaluation in order to identify possibly universal patterns
related with biking safety.

• We also showcase how these models can be used by policy makers to evaluate the
current infrastructure and decide on updates that maximize bike safety (possibly
under other constraints).

The rest of the paper is structured as follows: Sect. 2 discusses related to our study lit-
erature and further differentiates our work. Section 3 describes the datasets used in our
analysis as well as the biking safety model developed. We further provide our model eval-
uations in the same section. Section 4 shows how our model can be used for facilitating
decisions on infrastructure updates that maximize biking safety under various constraints.
Finally, Sect. 5 discusses the limitations of our study, while Sect. 6 concludes our work.

2 Related studies
In this section we will discuss relevant to our study research and position our study within
this literature.

For the past few decades, transportation planners have been trying to identify how an ur-
ban environment can attract more bike commuters. For example, Clarke [11] explores the
key factors in having a bike-friendly city. While Clarke focuses on the institutionalization
of bicycle programs within agencies, safety is identified as an important factor that agen-
cies will have to consider and overcome in order for biking to be fully integrated to the rest
of the urban transportation network. As a result there are several studies in the literature

1We discuss this and other relevant literature extensively in the following section.
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that aim at assessing the safety (or risk) of biking in the city and identifying characteristics
of the street network that could help improve safety. A main differentiating point between
these studies is the way the concept of safety is quantified. There are three ways that have
been used to examine the concept of safety:

• Actual safety: In this case the risk of biking is directly assessed through data that
capture both accidents/fatalities as well as exposure of bicyclists to these risks (e.g.,
bike trip counts).

• Perceived safety: In this case risk of biking is assessed through user surveys, and hence,
provide a subjective view of the road users.

• Inferred safety: When there is not a direct measure of quantifying the risk of biking,
the latter can be inferred through indirect measures, such as the relative position or
speed of motor vehicles to bicycles.

In order to calculate the actual safety, studies have relied on exposure estimates from
national surveys (e.g., [12]) or through video taping of traffic (e.g., [13, 14]). An interesting
approach for dealing with the problem of estimating the exposure volume (e.g., the num-
ber of trips a bicyclist has taken, the number of bike trips over a specific segment etc.) has
been presented in [15, 16]. In these studies, the authors use a case-crossover approach,
where data from bike accident locations are matched with a random point on the trajec-
tory the bicyclist followed at the trip that led to the accident. The dataset that is created
this way allows to examine the influence of infrastructure on injury risk, while ensuring
strict control for external covariates (i.e., exposure to risk, cyclist traffic volume) and for
personal and trip characteristics (e.g., propensity for risk-taking, time of day). However,
while this case-crossover approach does not require knowledge of the exposure volume,
it does require the full trajectories of bike trips, which can also be difficult to access.

Given the possible lack of detailed data on bicycle accident or risk exposure, especially
during the beginning of biking expansion in cities,2 researchers have also been interested
in assessing and quantifying the perceived safety of biking. Even though actual and per-
ceived safety can differ, understanding how people perceive biking safety is particularly
important; it can provide simple ways with which transportation and city authorities can
nudge more people to use bicycle for their commute. To that end several studies have per-
formed user surveys to understand what street features commuters associate with safety
and/or which street aspects cyclist pay attention to (e.g., [18–22]).

This research has led to the development of various indices that aim at quantifying the
risk/safety associated with biking over a specific street segment. In the late 1980s, early
1990s, the efforts were mainly focused on utilizing a combination of perceived and inferred
safety. Davis [23] was the first to develop a score (Bicycle Safety Evaluation Index) with
the objective of estimating the probability of an accident over a specific segment. The
index combines information for the number of lanes, pavement, speed limit and similar
variables. However, the weighting of each of these variables is subjective and it does not
incorporate bicycle trips volume as an exposure variable. Despite its shortcomings the
Davis work was the basis of the roadway condition index (RCI) and the Florida’s Bicycle
Coordinator segment condition index (SCI) [24]. Landis [25] built on these theoretical
models to develop the interaction hazard score (IHS), whose results are evaluated through
surveys with bicyclists, essentially attempting to recreate the perceived safety.

2In fact, even today that cities provide open information/data on bicycle accidents, these are constraint only to the accidents
that are reported, which can be as low as 14% [17].
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Table 1 Basic information for our bike accident data

City Years covered Sample size

London 2005–2017 3765
Boston 2010–2013 2157
Pittsburgh 2004–2017 1724

Many of these very early attempts to develop models for bike safety in a city had to deal
with the absence of access to detailed data on bike accidents (and street level mapping) that
we have today. Closest to our study is the work by Allen-Munley et al. [26], who used crash
data from Jersey City to model the severity of a bicycle crash. In particular, the authors—
similar to our study—build a logistic regression model for the severity of an accident using
as independent variables various street features (e.g., speed limit, number of lanes etc.).
The authors are focused more on a descriptive model, and hence, they do not evaluate the
predictive power of their models. The latter is the main focus of our study, since it can
drive educated recommendations for alterations in the infrastructure that potentially can
improve biking safety. Furthermore, we also cross evaluate the models in different cities,
in order to examine the presence of any universal patterns in terms of biking safety.

3 Data and methodology
In this section we will describe the datasets we used for our analysis as well as the biking
safety model we developed.

Bike Accident Data: To perform our study we obtained data on traffic accidents that
involved bicycles from three metropolitan areas across Europe and North America. While
these data are obtained from different sources (i.e., the Open Data portal of each city) they
all provide the information we need in order to build the safety model. In particular, we
collected data from:

• London: London’s bike accident dataset is obtained from CycleStreet3 and covers the
period between 2005 and 2017.

• Boston: Boston’s dataset is obtained through Cambridge Open Data4 and covers the
period between 2010 and 2013.

• Pittsburgh: Pittsburgh’s dataset is obtained through the Western Pennsylvania
Regional Data Center5 and covers the period between 2004 and 2017.

Table 1 provides some additional basic information from the data. While these datasets
are compiled, curated and distributed by different entities, the subset of the information
that we need for building a biking safety model is included in all three datasets. In par-
ticular, the tuple of interest is: <Lat, Lon, Accident Severity>. While latitude
and longitude is unambiguous information, the severity of an accident can be defined dif-
ferently across the different cities. For example, in the London dataset the severity levels
are specified as “slight”, “serious” and “fatal” while in the Pittsburgh dataset they are cat-
egorized as “not injuries”, “minor injury”, “moderate injury”, “major injury”, and “killed”.
Finally, in the Boston dataset the severity is represented by a Likert-like scale between 0
(no injury) to 4 (fatal). In order to be able to build models that are comparable between the

3https://bikedata.cyclestreets.net
4https://data.cambridgema.gov/Public-Safety/Crash-Map-2010-2013/4tke-xhvq
5https://data.wprdc.org

https://bikedata.cyclestreets.net
https://data.cambridgema.gov/Public-Safety/Crash-Map-2010-2013/4tke-xhvq
https://data.wprdc.org
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Table 2 Label matching between datasets

Dataset Existing labels Unified labels

London slight slight
severe severe
fatal

Boston 0 (no injury) slight
1 (light injury)
2 (fair injury) severe
3 (serious injury)
4 (fatal)

Pittsburgh not injures slight
minor injury
moderate injury severe
major injury
Killed

different cities, we have unified the labels for the severity of the accidents. In particular,
we have used two labels, namely, (i) severe, and (ii) slight, and Table 2 shows the mapping
between the lables in each city. We will further discuss the potential limitations from this
in Sect. 5.

Street Features Data: Having the latitude and longitude of a traffic accident allows us to
obtain various information about the location that could be correlated with the severity
of an accident involving a bicycle. Using the OpenStreetMap’s API we extract street-level
features for each of the accident locations. These features include speed limit, the exis-
tence of a bikelane or not, the width and the length of the street segment, the hilliness,
the topology of the street segment (i.e., whether it is straight or curved), as well as, the
distance of the accident location from an intersection.

Street Network: An important factor that we would like to examine as part of our model
is the traffic volume on each street segment. However, we do not have access to this in-
formation, and hence, we take an indirect approach using as proxy appropriate network
features. In particular, we extract from OpenStreetMaps the actual street network of each
city, N = {V ,E}. The set of nodes V represents street intersections, while the set of edges E
represents street segments connecting these intersections, i.e., edge ei,j ∈ E exists if there
is a street segment between intersection i ∈ V and intersection j ∈ V . Using this network
we calculate the edge betweenness centrality for every edge e ∈ E . The edge betweenness
βe of edge e is simply the sum over all the possible pairs of nodes (i, j), of the fraction of all
pairs shortest paths between i and j that pass through edge e:

βe =
∑

i,j∈V

σij(e)
σij

, (1)

where σij is the number of all shortest paths between nodes i and j, while σij(e) is the
number of those that pass through e. The betweenness centrality of an edge e is essentially
proportional to the probability that e will be part of one of the shortest paths between a
randomly selected pair of nodes i and j. Hence, one can make a very plausible hypothesis
that the betweenness centrality of a street segment in our network N is a good proxy for
the overall traffic over the corresponding segment.
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3.1 Bike safety models
To reiterate, our goal is to build a model that will capture the safety s (or risk ρ depend-
ing on how it is viewed) of biking in an urban environment. Ideally, given data from bike
accidents on a street segment a risk score would be assigned to the segment based on the
number of these accidents. However, this number should be normalized with the total
number of bike trips that go through this street segment. If we only know that there were
10 bike accidents over a street segment, this does not inform us about the biking risk ρ as-
sociated with the segment. It can be anywhere from extremely low (e.g., if there have been
1 million bike trips over the segment), to completely risky (e.g., if there have been only 10
bike trips in total over the segment). We could then use this normalized accident count
as our dependent variable for a safety model (e.g., through a beta regression since the de-
pendent variable would be bounded by 0 and 1). Nevertheless, traffic data are not easily
available/accessible, and this problem is particularly pronounced for bike traffic. Further-
more, in this setting the choice of spatial aggregation could become challenging. While
street segment might seem an appropriate aggregation, different street segments can have
vastly different lengths, which can impact both the estimation of the independent vari-
ables themselves, as well as, the dependent variable. The latter could be dealt with, by
normalizing with the length of the street, but then interpretation and model choice (since
the dependent variable is not a probability anymore and beta regression would not be ap-
propriate) would be challenging. Therefore, we rely on a slightly different modeling setting
and definition of risk ρ that has also been used in existing literature [26].

In particular, we focus on a specific location l (that is, an actual latitude/longitude pair,
rather than street segment or other spatial aggregation), and define the risk associated
with this location ρl as the probability of an accident that happens at l being severe. We
can think of this definition as a second order safety score. Simply put ρl is the condi-
tional probability of an accident at l being severe given that an accident at l happened
(Al), i.e., ρl = Pr[�l|Al, x]. The aforementioned probability is also conditioned on the vec-
tor x, which are the independent variables of our model as described in what follows. We
model this probability through a logistic regression model, i.e.:

Pr[�l|Al, x] =
1

1 + e–aT ·x (2)

In this setting, every bike accident recorded is a data point associated with a binary
variable (1: severe, 0: non-severe accident). Then for every point of bike accident we obtain
the following features as our independent variables:

1. Speed-limit (v): This variable captures the allowed maximum speed in the
corresponding accident location.

2. Street width (w): This features represents the width of street of corresponding
accident location which also could be considered as an indicator for the number of
lanes.

3. Distance to closest intersection (d): This feature captures the distance to the closest
intersection for the corresponding accident location.

4. Hilliness level (h): This is a binary variable that represents the steepness of the
corresponding location and can be either “hilly” or “flat”.

5. Street topology (θ ): This binary variable demonstrates if the accident happened in a
curved or straight street.
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Table 3 Logistic regression coefficients for the risk model built with the datasets from different cities

Variable London Boston Pittsburgh

(Intercept) 4.372∗∗∗ 4.840∗∗∗ 2.979∗∗∗
speed-limit 11.071∗∗∗ 6.228∗∗∗ 12.332∗∗∗
Street width 8.937∗∗ 3.827∗ 6.382∗∗∗
betweenness 5.093∗∗∗ 4.827∗∗∗ 3.082∗∗
dist-intersect –6.978∗∗∗ –4.280∗∗ –3.829∗∗
(hilliness) hilly 7.832∗∗∗ 7.374∗∗ 10.736∗∗∗
(topology) curved 12.932∗∗∗ 6.482∗∗∗ 3.278∗∗∗
(bikelane) with –14.891∗∗∗ –18.349∗∗∗ –11.272∗∗∗
Interaction terms
speed-limit. betweenness 11.742∗∗ 4.729∗∗ 3.952∗
speed-limit. (bikelane) with –21.922∗∗∗ –23.749∗∗∗ –23.739∗∗∗
speed-limit. dist-intersect 4.281 4.839 3.398∗

∗ ∗ ∗p < 0.01, ∗∗p < 0.01, ∗p < 0.05.

6. Bikelane (b): This binary variable captures the existence of bike-lane at the location of
the corresponding accident.

7. Street Betweenness (β): This feature captures the edge betweenness centrality of the
street segment where the accident occured in the street network. This variable can
be thought of as a proxy for the traffic volume at the location of the accident.

Table 3 presents the results obtained from each city. We train these models using the
last 4 years that each dataset covers. The reason for restricting building the model with
more (but older) data is twofold: (i) the street features 15 years ago are most probably
(very) different than what they are now, and (ii) as people get more used to biking around
the city and use improved biking equipment that exists today the risks associated can also
change. Therefore, we want to restrict our model to only (fairly) recent data. As we can
see all of the features are strongly correlated with the probability of a severe accident and
the direction of these correlation is consistent across cities. For example, an accident that
happens on a central street (i.e., large betweenness) is expected to have higher risk for
severity, while the presence of bike lanes reduces this risk.

However, apart from the direction of the correlations, we are also interested in how dif-
ferent the various coefficients of the models are. Hence, in Fig. 1 we present the 95% con-
fidence interval of the coefficients for each of the models. As we can see, even though the
actual coefficients are different, their confidence intervals overlap, which essentially means
that their is no statistical difference between the model coefficients.6 In other words, bik-
ing safety appears to be correlated with street features in similar ways across the different
cities we examined.

Finally, we selected a 1000 random locations from a different city (San Francisco, Califor-
nia) and applied each one of the risk models learnt to estimate the conditional probability
of a severe bike accident on that location. Our goal with this experiment is to compare
the differences in the predictions provided by the various models for the same points. Fig-
ure 2 presents the scatter plots of these predictions, where the two axes presents the risk
probability based on the models from two different cities. As we can see the points follow
closely the y = x line, which means that all models give similar risk probabilities for the
same locations.

6We also present in Table 4 the p-values for the difference of the model coefficients.



Daraei et al. EPJ Data Science           (2021) 10:11 Page 8 of 16

Figure 1 The 95% confidence intervals for the regression coefficients from the biking risk models built across
different cities overlap for all independent variables

Table 4 Difference in regression coefficients and corresponding p-value

Variable London vs. Boston London vs. Pittsburgh Boston vs. Pittsburgh

(Intercept) –0.468 (0.471) 1.393 (0.373) 1.861 (0.251)
speed-limit 4.843 (0.103) –1.261 (0.284) –6.101 (0.061)
Street width 5.11 (0.126) 2.555 (0.275) –2.555 (0.101)
betweenness 0.266 (0.201) 2.011 (0.052) 1.745 (0.071)
dist-intersect –2.698 (0.275) –3.149 (0.307) –0.451 (0.065)
(hilliness) hilly 0.458 (0.347) –2.904 (0.141) –3.362 (0.094)
(topology) curved 6.451 (0.171) 9.654 (0.234) 3.542 (0.053)
(bikelane) with 3.458 (0.289) 3.619 (0.081) –7.077 (0.242)
Interaction terms
speed-limit. betweenness 7.013 (0.101) 7.791 (0.065) 0.777 (0.053)
speed-limit. (bikelane) with 1.827 (0.242) –0.01 (0.218) –0.23 (0.818)
speed-limit. dist-intersect –0.558 (0.051) 0.883 (0.053) 1.441 (0.068)

Figure 2 Severe accident probability for 1000 random locations in San Francisco as estimated from all three
different risk models. All models provide similar probabilities for the same location

3.2 Evaluating the models’ predictive power
Apart from the descriptive nature of the biking risk models explored above, we are also in-
terested in their predictive power. To evaluate the predictive power of each model we split
each dataset to a training and a testing set. In particular, for each city we use the first two
years in our dataset for training and the last two as our out-of-sample testing set. Table 5
present the out-of-sample accuracy for each model, as well as, the Brier score. The latter
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Table 5 Out-of-sample accuracy and Brier score for the different models

City Accuracy BS BS-reference BSS

London 0.885 0.119 0.14 0.15
Boston 0.832 0.169 0.19 0.11
Pittsburgh 0.821 0.178 0.21 0.15

is a measure of probability calibration. Specifically, for a probabilistic model its classifica-
tion accuracy paints only part of the picture. For example, two models M1 and M2 that
both predict an accident will be severe—i.e., Pr[�l|Al, x] > 0.5—they will have the same
accuracy. However, if PrM1 [�l|Al, x] = 0.9 and PrM2 [�l|Al, x] = 0.55, the two models have
different probability calibration. Brier score [27] quantifies this calibration for each model.
In particular, for the case of binary probabilistic prediction, the Brier score is calculated
as:

BS =
1
N

N∑

i=1

(πi – yi)2, (3)

where N is the number of observations, πi is the probability assigned to instance i of being
equal to 1 and yi is the actual (binary) value of instance i. The Brier score takes values be-
tween 0 and 1 and as alluded to above evaluates the calibration of these probabilities, that
is, the level of confidence they provide. The lower the value of BS the better calibrated the
output probabilities are. Continuing on the example above a 0.9 probability is better cali-
brated compared to a 0.55 probability (when the ground truth is label 1) and hence, even
though M1 and M2 have the same accuracy, M1 is better calibrated (lower Brier score –0.01
compared to 0.2025). As we can see all models exhibit out-of-sample accuracy higher than
82%, while their calibration is very good as captured by the Brier score. In particular, the
Brier score for each model is much lower as compared to the corresponding score for a
reference model. The latter is a typical baseline Brier score used for evaluating the quality
of a model, and is obtained through a baseline model that assigns to each data point the
base probability of the positive class (in our case “severe” accident). Using the Brier score
of the reference model BSref , we can further calculate the skill of probability estimates us-
ing the Brier Skill Score (BSS) Specifically, if BSref is the Brier score of the reference model,
then BSS is calculated as:

BSS = 1 –
BS

BSref
(4)

BSS will be equal to 1 for a model with perfect calibration, i.e., BS = 0. A model with no
skill over the reference model, will have a value of 0 since BS = BSref . If BSS < 0, then the
model exhibits less skill than even the reference model.

Finally, we evaluate the accuracy of the probability output of each model by deriving the
probability calibration curves for the test set in each case. In order to compute the accuracy
of the predicted probabilities we would ideally want to have several bike accidents (e.g.,
100) happen at the same location l. If the model assigned a 75% probability of an accident
at location l being severe, then we would expect about 75 of the accidents observed in l
to be severe. However, this is clearly not realistic to have (at least for the vast majority of
the locations) and hence, in order to evaluate the accuracy of the probabilities we will use
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Figure 3 Reliability curves of the biking risk model probabilistic predictions

Table 6 Accuracy and Brier score for out-of-city evaluations

Training city Testing city Accuracy BS BS-reference BSS

London Boston 0.857 0.142 0.17 0.16
London Pittsburgh 0.822 0.177 0.21 0.16
Boston London 0.806 0.193 0.22 0.12
Boston Pittsburgh 0.797 0.222 0.24 0.08
Pittsburgh London 0.786 0.210 0.24 0.13
Pittsburgh Boston 0.763 0.236 0.25 0.06

all the accidents in our dataset. In particular, if the predicted probabilities were accurate,
when considering all the accidents A where a severe incident was predicted with a proba-
bility of x%, then a severe accident should have been observed in (approximately) x% of A.
Given the continuous nature of the probabilities we quantize them into groups that cover
a 10% probability range. Figure 3 presents the predicted probability of a severe accident
on the x-axis, while the y-axis presents how many of these accidents were indeed severe.
Furthermore, we present in the inset figure for each calibration curve the distribution of
the predicted probabilities, which as we observe cover fairly uniformly the whole range
of probabilities. As we can see the calibration curve is very close to the y = x line, which
practically means that the predicted probabilities capture fairly well the actual biking risk
probabilities.

3.3 Cross-city models
In Sect. 3.1, we compared the coefficients for the safety models we built for the different
cities. Here we want to evaluate the ability of a model trained on a specific city to predict
the severity of accidents in a different city. These cross-city evaluations and comparisons
are largely absent from the current literature in urban informatics, but are very important.
The ability to predict the severity of accidents in city A based on a model that was trained
with data from city B, is a good indicator that there might be universal patterns in biking
safety. Simply put, knowledge obtained from a specific city might be transferable (and
generalizable) to another city.

In particular, we use the model trained with data from each city in our study to pre-
dict the severity of accidents in the other two cities in our study (6 pairs in total). Table 6
presents the accuracy and the Brier score for these experiments, while Fig. 4 shows the
reliability curves for these predictions. As we can see, the accuracy, while reduced as com-
pared to the out-of-sample performance for the same city, is still high. The same is true for
the Brier score (and the corresponding Brier skill scores). In particular, the performance
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Figure 4 Calibration curves for out-of-city severe biking accident predictions

Figure 5 Biking safety in the city of Pittsburgh as calculated from our model

of a model trained on London data and evaluated on Boston data—and vice versa—exhibit
almost as good performance as the within city evaluations. The dataset from the city of
Pittsburgh is much smaller and this could impact the model quality, especially when used
in this cross-city experiment. Finally, Fig. 4 presents the calibration curves for the differ-
ent pairs of training-test cities. As we can see again, the calibration of the probabilities are
good and the curve is close to the y = x line.

4 Application demonstration: improving bike safety under constraints
This type of models allow us to evaluate the biking safety within a city and can facilitate
policy decisions with respect to infrastructure updates. For example, Fig. 5 presents the
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interactive map of results we obtained from our model for the whole city of Pittsburgh. By
clicking on each point, users are able to obtain its safety score. In particular, for every point
on the street network we estimate the safety s (which is 1–ρ) associated with this point and
visualize it on the map. Safe locations (i.e., low risk of severe accident) are colored green,
while risky locations are colored red. Using these results one can start identifying locations
that are not as safe as needed and explore what infrastructure changes (e.g., widening of
a street, installation of a bike lane etc.) are going to have the maximum impact on biking
safety, possibly under budgetary (and policy) constraints.

For example, Fig. 6(a) presents a three square miles area located within the city of Pitts-
burgh. The selected area does not currently include separate bikelanes for cyclists’ trans-
portation. The average safety score obtained for this area is s = 0.54.

Let us assume that we would like to enhance biking safety for this area and we have
budget for adding bike lanes. Furthermore, we have the constraint that we cannot install
bike lanes on local streets (which typically have low traffic anyway). Figure 6(b) presents
the safety scores for the same area but now assuming that bike lanes have been installed
in all of the non-local streets. Now the average safety score has increased to s = 0.68. This
corresponds to an approximately 26% increase in the average biking safety within the area
by simply adding bike lanes in non-local streets.

Obviously, with cities being cash-strapped today, they cannot just install bike lanes, or
widen all the streets. However, models similar to the ones we developed in this study,
allow policy makers to better understand the correlations between the characteristics of

Figure 6 The examined area has an average safety score of 0.54. By adding bike lanes to the main streets, the
safety score increases to 0.68; a 26% increase in the average safety score
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the existing infrastructure and how one could potentially improve the safety for bikers. In
fact, one could explore a variety of (viable) options and decide which one is the optimal
based on the criteria of interest (e.g., trade off between safety and cost etc.).

5 Discussion and limitations
Our study contributes to the literature of urban informatics and more specifically to the
area of computational transportation modeling. A large portion of the literature that lays
at the intersection of transportation and cycling is focused on studying the commute be-
havior of cyclists, policies and infrastructure that can nudge people towards cycling, as
well as, the benefits—both personal and societal—from increased levels of biking in a city
(e.g., [28–36], with the list not being exhaustive). As mentioned earlier bike safety is re-
lated with increased levels of biking, and even though causality most probably runs in both
directions [28, 37], understanding the association between the urban infrastructure and
cycling safety is crucial if cities are to rely more on biking in the future. While models for
biking safety have been developed in the past they are typically based on a small num-
ber of observations and most importantly cover a single city/area. In our study we aim at
identifying aspects of biking safety that are similar across cities. While the three cities we
examined are not representative of all—or even most of—the cities worldwide, they exhibit
some very substantial differences in terms of both their biking infrastructure, as well as,
their geography. For example, we used MapQuest’s elevation API an obtained a uniformly
random sample of elevation for points on the street network of each city (approximately
15,000 points in each city). Figure 7 presents the distributions of the elevation for the three
cities. What is particularly interesting in this case in terms of biking is the variability of
the elevation across the street network. As we can see the variability in Boston is much
lower as compared to London and Pittsburgh. The standard deviation of the elevation is
approximately 57, 43 and 17 meters for Pittsburgh, London and Boston respectively. While
elevation is only one aspect of a cities geography, it is a particularly important one for bik-
ing and bike usage [38]. Furthermore, the bike infrastructure in these cities is different.
Based on our OpenStreetMap data, the fraction of street length equipped with biking in-
frastructure (dedicated lanes and protected tracks) varies. In London, this fraction is 9.2%,
which is in stark contrast to only 5.6% and 2.8% for Boston and Pittsburgh respectively. Of
course, there are also deeper differences (at least between London and the two US cities in

Figure 7 The distribution of elevation for a random sample of points on the street network for the three cities
studied
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our study) that relate to the overall structure and planning of the city, that is, the division
between traditional cities and the radiant cities model (with the latter being the model for
many American cities). While of course we cannot claim that our models capture globally
universal patterns, the differences across the three cities studied provide support for their
generalizability potential.

Furthermore, our street level data were collected from OpenStreetMap. While Open-
StreetMap is expected to provide high quality information in big cities like London, Boston
and Pittsburgh, it is still a crowdsourcing platform and hence, it is possible to still have in-
complete/erroneous information. However, the general trends identified are not expected
to be significantly impacted by the crowdsourcing nature of OpenStreetMap. One of the
possible limitations of our study is that some of the street features we collected from Open-
StreetMap are contemporary and they might have been different when the actual accident
data were recorded. For example, the speed limit, or the presence of a bikelane might have
changed over the years. We have tried to account for that by analyzing only recent data.
Similarly, while we have used the street betweeness β as a proxy for the traffic on a street,
this does not account for the temporal nature of the traffic. Simply put, even though be-
tweeness might be a good proxy for the average traffic over a day, it is not able to capture
its temporal patterns. Moreover, the original severity labels for an accident have different
categories. Although we unified them as demonstrated in Table 2, there is still a subjective
element on how the original data were classified.

Finally, other classification models (e.g., tree classifiers, RNNs etc.) could possible per-
form better in predicting the severity of a bike accident. However, we wanted a model that
is easily interpretable. This is particularly important for policy makers that want to make
decisions based on the information provided by the model. At the same time more in-
dependent variables, e.g., features obtained from visual cues—presence of trees, head-in
parking, presence of billboards etc.—could provide further information and further im-
prove the quality of the model. We plan to explore similar features in future studies.

6 Conclusions
In this work our objective is to build an appropriate model that will allow us to understand
the relationship between street infrastructure features and biking safety. To achieve our
objective we obtain traffic accident data which involved a bicycle from three metropolitan
areas, namely, London, Boston, and Pittsburgh. We further collected street features for
the locations of the accidents and built a logistic regression model for each city for the
probability of a severe accident, conditional to the presence of an accident. Our results
indicate that these models are transferable between cities (at least between the ones we
examined). In particular, the coefficients are statistically the same in all three models, while
each model has very good predictive power for accidents that happened in a different city.
Finally, we show how our models can be useful to policy makers by evaluating the cur-
rent state of bike safety within a city and analyzing “what-if” scenarios for infrastructure
updates.
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