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ABSTRACT
To walk around the city, individuals use mobile mapping services,
and such services mostly suggest shortest routes. To go beyond
recommending such walkable routes, we propose a new framework
for automatic wayfinding for pedestrians. This framework tackles
two main drawbacks from which past work suffers, namely coarse-
grained representation of space and absence of contextual dynam-
ics. We model the human tendency to regularize space by bor-
rowing a spatial representation, Space Syntax, from the discipline
of Architecture. Moreover, the proposed framework accounts for
contextual dynamics of individual streets by predicting the popu-
larity of each street under different contexts (e.g., at a given time,
with a certain weather condition). Using Foursquare check-ins (i.e.,
whereabouts of the users of the popular location-based service) and
publicly available weather data, we validate our framework in the
entire city of Barcelona. We find that, with paths slightly longer
than the shortest ones, our framework is able to accommodate our
mental topography and effectively capture contextual changes.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Experimental Study, Path Recommendation, Urban Informatics

1. INTRODUCTION
More than half the world’s people now live in cities and, by 2050,

more than 70% will do so. At a time when millions of individu-
als are moving to cities, understanding the pragmatics of designing
navigation tools is a major consideration.

Many behavioral scientists are aware of the principles that un-
derlie successful wayfinding [3, 11, 18], and those principles have
played some role in the design of navigation tools but usually a
secondary and accidental one. They have often taken a back seat to
other concerns, which reflect an over-reliance on efficiency. For ex-
ample, conventional wisdom holds that, since time is a commodity
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in short supply, navigation tools have to limit themselves to recom-
mending the most efficient (shortest) routes. For simplicity’s sake,
such tools should also shy away from the complexity of cities. We
all know that activities in the city shift cyclically and progressively
as contextual factors (e.g., time of the day, weather) change [17],
and yet wayfinding tools have little awareness of city dynamics.

A case in point is the difference between day and night. Take
the venues Foursquare users in Barcelona go to at night and those
they go to during the day. By connecting those venues, one can
readily observe, for the very two same points of ‘Arc de Triomf’
and ‘Estacio de Franca’, two very distinct paths (Figure 1).
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Figure 1: Same destination, different beaten paths for day (red) and
night (blue). At daylight, Foursquare users in Barcelona go through
the park. At night, through the little streets full of cocktail bars.

Our goal is to propose a new way of navigating the city that is
aware of how urban rhythms change with contextual factors. The
main research contribution consists of a proposal that incorporates
principles of successful wayfinding and accommodates contextual
changes just by adding a few extra minutes to walking time. More
specifically, we make four main contributions:
• We model contextual dynamics by adapting state-of-the-art

techniques such as Factorization Machines and ranking opti-
mization techniques to our problem (Section 3.1). The idea is
to model how the interestingness of different points in the city
(e.g., Foursquare venues) changes with contextual variables
such as time of the day or weather.

• We model space by incorporating principles of successful
wayfinding. We do so by borrowing a modeling technique
from the field of Architecture called space syntax (Section 3.2).
This technique mirrors our own mental maps by representing
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space as a series of simple viewpoints (nodes) and connections
between them (edges). At the core of our research contribu-
tion, this way of modeling space can be integrated with any
context modeling other than the one proposed in the previous
point.

• We combine the previous two points and propose a new frame-
work that models contextual dynamics within the space syntax
representation (Section 3.3).

• We evaluate our framework using Foursquare and weather data
in the city of Barcelona (Section 4). We find that our frame-
work is able to suggest contextually relevant routes, it is able
to do so without any considerable walking overhead, and it
might be used not only in central parts of the city but also in
low-density areas.

The main novelty of our work is about embedding context-aware
desirability of street segments within the space syntax framework.
This is far from being trivial for three main reasons. First, despite
route finding has already exploited space syntax [4], no working so-
lution that integrates space syntax with current mapping technolo-
gies in the commercial world has been engineered yet. Second, it
is unclear how to solve the data sparsity problem (i.e., street desir-
ability scores might not always be available). To automatically fill
missing data, we will propose to use matrix factorization to learn
dependencies directly from the data (e.g., desirability scores at spe-
cific times of day might be related and, as such, that information
might be used to fill potential missing desirability scores). Third,
we do not know how to fine tune the parameters of a framework that
combines space syntax with matrix factorization for route finding.

2. RELATED WORK
Wayfinding has been a popular research topic [3]. Considerable

research has gone into how to integrate human psychological as-
pects [19, 32, 34] and contextual factors into wayfinding tools (by
contextual factors, those researchers mainly meant the conditions
of the built environment [15, 31]). Some research has also gone
into how to leverage psychological aspects to design better ways of
visualizing navigation information on mobile devices [20].

Early work in context-aware recommendation has used contex-
tual information either for pre-processing, whereby context is used
for data selection, or for post-processing, whereby context is used
to filter recommendations [1]. Later work has, instead, focused on
contextual models that integrate recommendations, users, and con-
texts at the same time. The main state-of-the art approaches are
two: tensor factorization [14, 30], and factorization machines [27,
29]. Those approaches have been initially designed to work on ex-
plicit ratings but have been recently extended to work on implicit
feedbacks as well [5]. We capitalize on those recent insights to
explore the applicability of factorization machines to our problem.

A lot of research work has gone into the problem of trip rec-
ommendation. Its goal is to include good venues in a trip. Past
research proposals mainly differ in what they mean by good. For
Gionis et al., good venues are those that respect time/distance con-
straints and are ordered in a reasonable way (e.g., lunch at a restau-
rant might be followed by a coffee shop) [7]. In this context, a
good path is a set of venues that are desirable for a given user or
user class (e.g., tourists vs. locals). For Lu et al., good venues
are those that meet specific constraints (e.g., time budget, a user’s
liking, need for diversity) [16]. More recently, for Quercia et al.,
good venues are places in the city that are quiet or beautiful, or that
make people happy [24]. To create paths out of those concepts,
they modeled the city by dividing it into walkable cells. Within
each cell, perceptual factors such as beauty, quite and happiness

Table 1: Main Symbols.
Symbol Description

V set of venues (|V| = N );
T number of venue categories;
t(v) category for venue v;
sg = (s, t) axial segment from location s to t;
Ax(sg

f

) axial line for the segment sg
f

;
len(sg

f

) lenght of the segment sg
f

G = (S,E) segment graph defined over segments S,
e
f,g

2 E means that segment f and g are adjacent;
P

s,t

path (sequence of segments) from location s to t;
c context descriptor (binary M -dimensional array);
C set of observed contexts;
b(sg

f

; c) contextual interestingness of segment sg
f

;
ŷ(v; c) predicted # check-ins on venue v in context c;
w

f,g

(c) contextual cost associated to e
f,g

;
d
f,g

metric distance from sg
f

to sg
g

;
✓
f,g

angual change between sg
f

to sg
g

;
b(sg

f

; c) interestingness of segment sg
f

under context c.

were crowdsourced [25]. The authors conceded that their work has
two main limitations though: an over-simplified spatial representa-
tion based on cells that does not allow for a spatial analysis finer
than cell-level; and disregard for the effect of contextual factors.

To sum up, for simplicity’s sake, past work on route recommen-
dation and wayfinding has relied on coarse-grained spatial repre-
sentations and on over-simplified modeling of contextual dynam-
ics.

3. RECOMMENDATION FRAMEWORK
To move the research forward, we propose a framework for con-

textual route recommendations within a principled spatial repre-
sentation. A framework consists of algorithms and models, each of
which can be replaced. In that way, a framework is more general
than its composing models/algorithms.

For convenience, Table 1 collates the main symbols we will use
in this section.
Problem Definition. Our goal is to determine, given starting and
ending locations (s, t), a path P

s,t

that is short and interesting un-
der the specific context, where by context we mean, time of the day,
time of the week, and weather conditions. To this end, our frame-
work (a) models how each path’s dynamics change with context;
(b) embeds each path in a spatial representation mirroring human
mental topography; and (c) recommends a path by combining con-
textual dynamics with the specific representation of space.

3.1 Model of Contextual Dynamics
Our smallest unit of analysis is that of individual venues in the

city. Let V = {v
1

, · · · , v
N

} denote a set of N venues, where each
venue v

i

is a physical location (e.g., business, residence), which
can be categorized into T types (e.g., food, entertainment, shop),
and t(v

i

) denotes its category.
We are interested in modeling how a venue’s interestingness changes

with contextual factors. Each context can be represented as a m-
dimensional binary array c = {c

1

, · · · , c
M

}; for instance, consid-
ering the following contextual dimensions {day, night, weekday,
weekend, rainy, sunny}, the contextual descriptor c = (1, 0, 0, 1, 0, 1)

corresponds to “day, weekend, sunny”. Venue iv
i

’s interestingness
in context c needs to be predicted. That is because in reality, we
are not likely to observe the interestingness of all venues under all
contexts and, as such, most of the information will be missing.

Thus, upon observed interestingness information, we predict the
missing one. More formally, we predict ŷ(v

i

; c), which is the
estimated interestingness of venue v

i

under context c. To make
such predictions, we use the Factorization Machine framework. We
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chose it because it is an elegant formalization that has been shown
to work extremely well for numerical predictions [27]. The pa-
rameter estimation phase is based on learning algorithm which, by
exploiting pairwise comparisons, is directly optimized for ranking.
The combination of latent dimension modeling and ranking-based
learning allows the model to learn the popularity of venue-context
pairs that are unseen at training phase. The underlying assumption
behind this framework is that the predicted response for each pair
(v

i

, c) can be decomposed as a linear combination of the interac-
tions between input variables and K latent factors. In our case, we
consider the following model:

ŷ(v

i

; c) = w0

v

i

+wT

t(v

i

)

+

MX

j=1

c
j

·
KX

k=1

⇣
UV

v

i

,k

+UT

t(v

i

),k

⌘
·UC

j,k

,

where:
• w0 2 R1⇥N is the estimated interestingness for each venue

without considering context and venue type;
• wT 2 R1⇥T is the estimated interestingness for each venue

type without considering context;
• UV 2 RN⇥K reflects all venues’ positions in the latent space;
• UT 2 RT⇥K reflects all venue types’ positions in the latent

space;
• UC 2 RM⇥K reflects all contexts’ positions in the latent

space.
Given that ⇥ = {w0

,wT

,UV

,UT

,UC} is the set of model
parameters, and Y is the set of observed interestingness values, we
optimize ⇥ according to the following loss:

⇥

⇤
= argmax

⇥

X

(v
i

,c),(v
h

,c)2Y
y(v

i

;c)>y(v
h

;c)

ln�(x

i,h,c)� � k⇥k2 ,

where x

i,h,c = ŷ(v

i

; c) � ŷ(v

h

; c), �(x) =

1

1+e

�x

is the lo-
gistic link function, k⇥k is the L2-norm of parameters of the fac-
torization model. As a regularizer, we assume a prior distribution
⇥ ⇠ N(0,�I), where � is a regularization parameter (we exper-
imentally found the best value of � to be �

w

0 = �

w

T

= 0.1,
�

U

C

= �

U

T

= 0.01, �
U

V

= 0.0025).
When making predictions, this schema (which, as a matter of

fact, can be considered as a contextualized version of Bayesian
Personalized Ranking (BPR) [28]) does not focus on minimizing
the error loss to score individual venues (as prediction algorithms
usually do) but ensures that venue pairs are correctly ranked. To
learn the parameters of the model we apply a stochastic gradient
ascent procedure, which consists of multiple iterations. At each
iteration, it selects a venue v

i

and corresponding training sample
(v

i

, c), samples another venue v

h

at random (a challenger) such
that y(v

i

; c) > y(v

h

; c), and updates a parameter ⇥
p

to be:

⇥

p

⇥

p

+ ↵

✓
e

�x

i,h,c

1 + e

�x

i,h,c
· @

@⇥

p

x

i,h,c � �

p

·⇥
p

◆
.

This translates into setting the partial derivative @

@⇥

p

x

i,h,c to, say,
1, if we are updating the parameter w0

v

i

. More broadly, the par-
tial derivative is set to take different values depending on which

parameter is to be updated:
8
>>>>>>>><

>>>>>>>>:

1 if ⇥
p

= w0

v

i

, wT

t(v

i

)

�1 if ⇥
p

= w0

v

h

, wT

t(v

j

)P
M

j=1

c

j

·UC

j,k

if ⇥
p

= UV

v

i

,k

, UT

t(v

i

),k

�
P

M

j=1

c

j

·UC

j,k

if ⇥
p

= UV

v

h

,k

, UT

t(v

h

),k

UV

v

i

,k

�UV

v

h

,k

+UT

t(v

i

),k

�UT

t(v

h

),k

if ⇥
p

= UC

j,k

, where c

j

= 1

0 otherwise.

Those formulae have been derived from multiple research papers
that have never been collated together before [28, 27].

3.2 Model of Space
After characterizing the dynamics of venue interestingness, we

need to place them in space. To model space, one could resort
to a traditional representation inspired by Euler’s seven bridges of
Konigsberg: the urban layout is modeled as a network whose nodes
are intersections, edges are roads, and edge weights reflect cost
values. This representation is called primal graph and is often used
for planning policies of cities.

However, such a representation does not account for the way in-
dividuals navigate space. That is why, in the late 1970s, Hiller et
al. developed the space syntax framework [9]. Space syntax aims at
providing a graph representation of the urban layout that accounts
for the way people deal with space and navigation. It simplifies the
spatial geometry by reducing complex spaces into sets of points
and lines [3]. The core of this methodology is the axial map: each
open space (e.g., street, square) is approximated by a minimal set of
straight lines (street segments or, in technical parlance, axial lines),
and their connections reflect the elements that are directly visible
by humans. Then, in a corresponding dual graph representation,
each axial line becomes a node, and each intersection between any
pair of axial lines becomes an edge [22].

Instead of using the original axial map representation, we opt
for a more recent formulation called Angular Segment Analysis
(ASA) [35]. This breaks axial lines into segments and records the
angle between them. ASA is becoming a popular tool in urban plan-
ning studies and has been introduced to deal with representational
problems the traditional axial lines have [26]. In ASA, an axial seg-
ment sg = (s, t) is a straight line connecting two locations s and t

that are on the same street and are reachable by walk without tak-
ing turns. The urban layout is then represented as a segment graph
G = (S,E) (Figure 2), where S is the set of axial segments, and
E ✓ S⇥S specifies the adjacency relationships between segments:
e

f,g

2 E, if the segments sg
f

and sg

g

intersect in one of their end-
points. As a final step, we need to associate a cost with each edge.
As it is often done in space syntax, we adopt two definitions of
cost. These reflect two distinct notions of physical distance: met-
ric distance d

f,g

, and angular change ✓

f,g

(examples of those two
quantities are highlighted in yellow in Figure 2). The metric dis-
tance between adjacent segments is calculated as half the sum of
their length: d

f,g

= (len(sg

f

) + len(sg

g

)) /2, where len(sg

f

)

is the length of the f -th segment. The angular change, instead, is
proportional to the angle of incidence of two segments at the in-
tersection and is normalized in the interval [0, 1] (✓ is 0, if there
is no turn; 0.5, if there is a 90

� turn; and 1, if the turn is 180

�).
By considering the angular change as a notion of cost, space syn-
tax models the idea that a route with many changes in direction is
generally perceived to be longer than it actually is: each turn brings
into view a new set of physical elements, which form a new region
in people’s abstraction of space [3].

275



Figure 2: Axial segments of “La Rambla” in Barcelona (left panel)
and corresponding segment graph representation (right panel). In both
panels, the path from node 2b to 9d is in bold. In the left panel, the
metric distance d and angular change ✓ between nodes 2d and 8a are
further highlighted. In the right panel, instead, the contextual cost w is
highlighted.

v1

s t

v2

v3
sg

sg_1

sg_1 sg_2

sg_4

sg_3

sg_nsg_i

(a)

(b)

(c)

Figure 3: A segment is considered to be interesting if three elements
related to it are interesting too: (a) the venues on it; (b) the segments
on the same axial line (segments that are visible from it); and (c) the
segments crossing it.

3.3 Path Generation
Having the segment graph G, for any source location s and a des-

tination t, we should now find a path
P

s,t

=

h
sg

(1)

= (s, ·), · · · , sg(n)

= (·, t)
i
. As a path is a se-

quence of adjacent vertices (segments) from s to t, one can easily
find it on G using Dijkstra’s algorithm (obtaining the optimal so-
lution) or A* algorithm [8] (settling for a computationally efficient
solution). However, either way, G needs to have weights on all its
edges, and each weight should reflect the cost of walking from one
street segment to the consecutive one in a very specific context. To
this end, we associate each edge e

f,g

2 E with a contextual cost
w

f,g

(c) 2 R+. This cost quantifies the difficulty of walking from
segment sg

f

to segment sg
g

:

w

f,g

(c) = f(d

f,g

, ✓

f,g

, b(sg

f

; c), b(sg
g

; c)).

In plain English, the difficulty of walking from sg

f

to sg

g

depends
on the metric distance d

f,g

one has to walk, on the angular change
✓

f,g

one experiences, and on how (un)interesting the segments sg
f

and sg

g

tend to be in context c.
Since quantifying metric distance or angular change is straight-

forward, only the segment’s interestingness remains to be defined.
We do so with three iterations (Figure 3).
Step (a) A segment is contextually interesting if the venues on it1

1Venue v

i

is considered to be on segment sg
f

, if v
i

’s geographi-
cally closest segment is sg

f

.

are contextually interesting:

b

0

(sg

f

; c) =
X

v

i

2V (f)

ŷ(v

i

; c),

where V (f) ✓ V is the set of venues on segment sg
f

.
Step (b) A segment is contextually interesting if “collinear” street
segments are contextually interesting:

b

1

(sg

f

; c) = b

0

(sg

f

; c)+
X

sg

g

6=sg

f

Ax(sg
f

)=Ax(sg
g

)

b

0

(sg

g

; c)·exp(�
d

2

f,g

2�

2

),

where Ax (sg

f

) is segment sg
f

’s axial line. The idea is that a seg-
ment propagates its influence to other nearby segments which are
directly visible by humans [10]. By collinear, we mean segments
that are on the same axial line. Since one pair of segments might
be closer than another, we need to discount by distance, and that
is what � does. Experimentally, through a grid search, we found
the best value of � be equal to 200 (at that value, the argument of
exp() for a segment that is 235 meters away equals 0.50).
Step (c) Finally, to a lesser extent, a segment is contextually inter-
esting if adjacent street segments (event those not on the same axial
line) are contextually interesting:

b(sg

f

; c) = b

1

(sg

f

; c) + �

0

BB@
X

sg

g

is adj to sg

f

Ax(sg
g

) 6=Ax(sg
f

)

b

1

(sg

g

; c)

1

CCA ,

where � 2 [0, 1] controls the influence of adjacent street segments
(� is set to 0.25 in our experiments). This third step captures the
intuition that people may walk on a street simply because there is
something interesting “just around the corner”.

Having defined all the composing elements of w
f,g

(c), we now
need to combine them. We do so based on findings about good
wayfinding. Cognitive scientists have found that people tend to
minimize changes in direction when walking to destination [11, 18,
21]. However, not everyone minimizes turns. Holscher et al. have
suggested that, when walking in a neighborhood, residents are com-
fortable with frequent changes of direction, while visitors mostly
rely of visible environmental features and tend to turn as little as
possible [12]. Based on this consideration, we define the contex-
tual cost as a combination of metric distance, angular change, and
interestingness:

w

f,g

(c) = d

f,g

(✓

f,g

(1� ↵

u

) + 1)

| {z }
part I

·

exp

✓
� (b(sg

f

; c) + b(sg

g

; c))2

2�

2

◆

| {z }
part II

. (1)

To clarify that formula of contextual cost, consider that it con-
sists of two parts.
Part I includes angularity, which is considered be a multiplier on
the metric distance. That is because it has been shown that a depth-
measure in the segment graph that multiplies angular change with
metric length is able to predict traffic flows and pedestrian flows
better than what standard axial analysis does [35]. To balance met-
ric distance and angular change, we introduce ↵

u

2 [0, 1], which
reflects the extent to which the user is familiar with the city or
neighborhood: for first-timers, ↵

u

could be set to 0, and angular
change ✓ would have the highest effect; for long-time residents, ↵

u
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shortest
least turn path
angular weighted path
axial_map

Figure 4: Paths generated for different combinations of metric dis-
tance and angular change on the map of Barcelona: the green path
combines the two, the red path considers only the metric distance, and
the blue one considers only the angular change.

could be set to 1, and angular change would have no effect. To vi-
sually illustrate the idea behind ↵

u

, we generate three paths from
the same source and destination (Figure 4): the green path is gen-
erated by setting ↵

u

= 0 (metric distance and angular change are
combined), the red by setting it to 1 (only metric distance is con-
sidered), and the blue by setting it to 1 while neutralizing the effect
pf metric distance (i.e., while setting d

f,g

to 1). In the green path,
the shortest path’s (the red path’s) zig-zagging is smoothed out by
the combination of metric and angular change.

Part II includes the interestingness scores of the two segments and
considers them, again, to be multipliers on the metric distance. In-
tuitively, the overall distance should be discounted if the segments
are considered interesting under the given context. This simple
design principle can be achieved by combining the two interest-
ingness scores with a Gaussian kernel. The more interesting the
segments, the closer the kernel function to 0, and the smaller the
perceived distance over the actual one. If the segments are not inter-
esting, the kernel is 1, and the perceived distance corresponds to the
actual one. The weight of the multiplier is controlled by a strolling
factor �, which allows for recommended paths that are long (low
�) or short (high �), as Figure 5 exemplifies (the Figure reflects the
results of different runs on real data). For � ! 0, a small increase
of interestingness results into the generation of longer paths. On
the other hand, for � ! 1, the kernel function is close to 1, and
that results into the generation of paths very similar to the shortest
one. � can be thus used to enforce constraints about extra-walking
time. A user might find desirable to walk a path longer than the
shortest one, but only if the extra-walking time does not exceed 10
minutes. To meet this requirement, the strolling coefficient � has
to be properly set. This is done by computing paths for increasing
values of �, and selecting the first one that meets the user’s desired
extra-walking time.

4. EVALUATION
The goal of our proposal is to generate paths tailored to specific

contexts (e.g., for daylight as opposed to for night, for sunny rather
than rainy days). To ascertain the effectiveness of our framework at
meeting this goal, our evaluation ought to answer four main ques-
tions:
• Recommendation Desirability. To which extent are our rec-

ommendations able to suggest contextually-relevant paths ?
• Walking Overhead. How much longer do they take to go much

3000:0.125573

#checkins from 9pm to 11pm

1.0000 - 1.0000

1.0000 - 3.0000

3.0000 - 6.0000

6.0000 - 12.0000

12.0000 - 46.0000

dijkstra - from A to B

contextual_high_gamma

contextual_medium_gamma

contextual_low_gamma

axial_map

Figure 5: Paths generated for different values of the strolling coeffi-
cient �. As � increases (i.e., from the green, to the yellow, to the blue
paths), stroll is reduced and the resulting path’s length is similar to the
shortest path’s (red path’s).

more contextual-relevant paths?

• Area Density. Do they work in low-density areas of the city as
well?

• Computational Overheads. What time and storage overheads
does our framework entail?

To see whether our framework effectively suggest recommenda-
tions tailored to context, and it does so without resulting into extra
walking time, we need to implement and test it in a real city. We
choose the city of Barcelona, not least because, for it, we have ac-
cess to axial maps, contextual data, and changes of street interest-
ingness with time and weather conditions. Next, we will evaluate
whether our proposal recommends contextually-relevant paths and,
in so doing, how it compares to competitive baselines. We will
then ascertain how much longer it takes to find paths that are best
in specific contexts, and whether it is effective not only in dense
areas (e.g., town center) but also in low-density neighborhoods. Fi-
nally, we will test whether our framework’s back-end could run in
a real-time fashion.

4.1 Experimental Setup

4.1.1 Datasets
To determine whether our route recommendations are tailored to

context, we need to have real data on how a venue’s interesting-
ness changes with context. To this end, we resort to a Foursquare
dataset released by [2]: 22,387,930 Foursquare check-ins collected
from September 2010 to January 2011. From these check-ins, we
extracted those that happen to be in Barcelona: roughly 60K check-
ins in 7364 places from 1690 distinct users. In our experiments, we
consider that the number of check-ins at a place is a good proxy
for quantifying the place’s interestingness, as previous work has
shown [33]. However, beyond experiments’ sake, we have to stress
that our framework is general enough to accommodate notions of
popularity other than the presence of check-ins. As a proxy for
venue v

i

’s interestingness in context c, we could consider the venue’s
beauty score [25], its walkability score [23], or its fit with user in-
terests [16] and needs [7].

The measure of interestingness has then to be studied as context
changes. By context, in our experiments, we mean two factors:
time and weather. As for time, we consider three temporal gran-
ularities: hour, day of the week, and month. We discretize each
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week into seven days (from Monday to Sunday), the year into 12
(months), and the day into 10 (hour slots), according to a equal-
frequency binning principle. The 1

st hour slot goes from midnight
to 7am, the 2

nd from 7am to 9am, the 3

rd from 9 to 11, 4th the
hour starting at 11am, 5th from 12am to 2pm, 6th 2pm to 4pm, 7th

4pm to 6pm, 8th the hour starting at 6pm, 9th from 7pm to 9pm,
and 10

th from 9pm to 11pm.
The second contextual feature for which we collect data con-

cerns weather. We collect weather data from the Weather Under-
ground2 and group similar weather conditions together based on
quantile frequency. In so doing, we identify 10 main weather con-
ditions3. We then stratify check-ins according to weather condi-
tions and time of the day.

4.1.2 Metrics
To measure the extent to which a path recommended by our pro-

posal is desirable, we need to have a metric that reflects path desir-
ability in the first place. A natural but primitive metric is to sum the
interestingness scores of all the venues on the recommended path.
However, the problem with this naive approach is that the longer
the path is, the greater the sum is likely to be. Thus, under such
metric, recommending extremely long paths would be desirable.
To fix that, we normalize the desirability of path P by its length
and call this quantity raw desirability:

raw desirability(P ; c) =

P
v2N(P )

y(v; c)
P

s2P

len(s)

, (2)

where N(P ) is the set of venues on (or in the vicinity of) path P ,
y(v; c) is venue v’s interestingness (e.g., number of check-ins) for
a given context c, and len(s) is the metric length of street segment
s.

Of course, that definition of desirability is not the only feasible
one. Variants are possible but ideally should not greatly affect the
results. To ensure that, we run our experiments with three variants
as well:
• raw desirability1(P ; c) =

avg

v2N(P ){y(v;c)}P
s2P

len(s)

• raw desirability2(P ; c) =
P

s2P

max

v2s

y(v;c)P
s2P

len(s)

• raw desirability3(P ; c) = max

v2P

y(v;c)P
s2P

len(s)

The first sums the average values of venue interestingness on each
path, the second sums the maximum venue interestingness on each
segment, and the third sums the maximum venue interestingness
on the entire path. Despite the significant differences among those
definitions, we will find that the results do not change in any statis-
tically significant way.

Finally, by considering the original definition of raw desirability,
critics might rightly say that the evaluation results would be diffi-
cult to interpret. Ideally, the results are best interpreted in a com-
parative fashion. Hence, to ease illustration, we introduce the ideal
recommendation strategy, call it oracle, and compare our method’s
desirability with the oracle’s. The oracle is granted with the abil-
ity to foresee the actual (not predicted) interestingness of all the
venues for every context. In each context c, the venues are ordered
according to their observed interestingness y(v; c). Having this
ideal recommender at hand, we can rephrase the definition of raw

2www.wunderground.com
3Rain = {Light Freezing Rain, Thunderstorms and Rain, Heavy
Rain, Rain Showers, storms and Rain}; Snow= {Heavy Snow,
Snow,}; Fog ={Shallow Fog, Fog, Patches of Fog}; Overcast= {
Drizzle, Light Drizzle, Light rain, }; Rain; Mostly cloudy; Clear;
Scattered Clouds; Partly Cloudy and Unknown.

desirability with:

desirability(P ; c) =
raw desirability

method

(P ; c)

raw desirability
oracle

(P ; c)

This quantity is easy to interpret as it will always be below 1 (no
method can be better than the ideal one), and the closer to 1, the
better the method’s performance.

To further expand our comparative study, we introduce yet an-
other class of recommendations: the most interesting path. This
strategy takes the path with the highest cumulative interestingness
y(v) =

P
c2C

y(v; c)). The cumulative interestingness is com-
puted on all the path’s venues across all possible contexts. As a re-
sult, those recommendations are context-agnostic, in that, between
two points, the same path is recommended no matter whether it is
Friday night or Monday morning.

4.1.3 Validation Execution
Our experiments unfolds by recording desirability scores for a

sample of 300 pairs of starting and ending locations in the whole
area of Barcelona. Focusing on the use case of pedestrian navi-
gation, we set the maximal geographical distance to be 1500 me-
ters between each pair of locations4, roughly less than 40 minute’s
walk. For each pair of destinations, a set of paths are generated.
These consist of the shortest path, the most interesting path, and our
own contextual path. We record the contextual desirability(P ; c)
for those paths, and do so with a carefully selected validation method-
ology. To see why, consider that a traditional cross-validation would
result in an experimental setup biased towards surprising good re-
sults. That is because, in the training phase, the algorithm that
predicts the venue interestingness scores sees only the venues that
have positive scores and does not see the venues that have zero
scores (even though the latter are the majority). As such, no matter
how wrongly the scores are predicted, as a by-product of cross-
validation, the path recommender would still end up with routes
that go through the observed venues and avoid the unseen ones,
creating an artificial bias in the evaluation. By contrast, to have a
validation that actually tests the effectiveness of our venue interest-
ingness predictions, we should take a conservative approach. We
do so by running our tests in a cold-start situation (cold-start as for
context). That is:
• We select a subset of contexts (i.e., test set Ctest) from the set

of observed context C. For example:

C

test

= {c = (h,w, d)|h 2 {11, 14� 15, 19� 23},
w 2 {Clear, Rain , Partly Cloudy}, d 2 {Tue, Fri, Sat}}

• At each iteration, we leave one context c 2 C

test out, and
train the FM model for the remaining contexts C\c. We find
that 30 is the number of latent factors for which AUC is
maximum (Table 2). We then sample 300 pairs of destina-
tions {(s, t)}

300

; generate the shortest path, our contextual
path, and the oracle path; record and compare those paths’
desirability(P

s,t

; c) scores.
In our experiments, we ignore the user-personalization compo-

nent, by setting a ↵

u

= 1 and thus considering only the contextual
cost; we set the strolling coefficient �

c

by line search over the in-
terestingness distribution such that the extra-walking distance does
not exceed 500 meters.

4This is the length of the straight line segment connecting two lo-
cations. The actual walking distance in the street might be slightly
longer.
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Table 2: Our prediction model’s AUC for different numbers of
latent factors K.

K AUC learning time(secs)
5 0.67 265.54
10 0.68 267.04
20 0.69 268.54
30 0.692 269.80
50 0.667 269.28
70 0.676 277.16
100 0.677 280.84
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Figure 6: The mean desirability scores for shortest, most interesting
(popular), and context-sensitive paths (compared to oracle paths). We
test whether the three means differ statistically and find that they in-
deed do (the corresponding t-test’s p-values are shown).

4.1.4 Recommendation Desirability
Figure 6 shows the mean desirability for the different paths. On

average, our contextual paths show a 80% increase over the shortest
paths (significance level < 10

�46

) and 8.5% increase over the most
interesting path (significance level of < 10

�4).
The difference of 8.5% is a promising - it reflects the ability of

the model to return predictions for venue-context pairs unseen at
training phase. Yet it is conservative result as it might reflect more
the nature of the data than algorithmic performance. To see why,
consider that only few venues happen to be sensitive to contex-
tual changes, while many are not. Our results include all venues
and, as such, are conservatively biased: as a thought experiment,
imagine an extreme case in which a tiny fraction of venues were
to be context-sensitive; we would not see any difference between a
context-aware recommender and a context-agnostic one. However,
that result would be an artifact of the data and would not speak
to the actual context-aware recommender’s performance. To test
whether the difference between the contextual path’s desirability
and the interesting path’s is limited by the abundance of contextual-
insensitive venues, we try to gradually filter those venues out and
see whether the mean desirability scores would consequently change.
That is, we:
• Stratify venues based on their contextual sensitivity:

sensitivity(v; c) =

������
y(v; c)� 1

|C|� 1

X

c
i

2C�c

y(v; c
i

)

������
.

• Compute the desirability scores considering only the top k%

most sensitive venues:

desirability

k

(P ; c) =

P
y(v;c)>0^sensitivity(v;c)>q

k

y(v; c)
P

s2P

len(s)
,

where q
k

denotes the kth upper quantile of the sample {sensi-
tivity(v;c)|y(v;c)>0} (k = 100 corresponds to considering all
venues and results into the original desirability values).

As one expects, we find that the more context-sensitive the venues
at hand, the larger the observed desirability gap between contextual
paths and interesting ones (Figure 7). That is simply because there
is a large room for improvement, and contextual paths is able to
capitalize on it.
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Figure 7: Difference between the contextual path’s mean desirability
and the most interesting (popular) path’s. This difference increases as
only the top k% most contextually-sensitive venues are considered.

4.1.5 Walking Overhead
So far we have ascertained that our framework does effectively

suggest contextually relevant paths. Ideally, those benefits should
not come at the price of lengthy routes. To see how much longer our
recommendations take to go much more contextual-relevant paths,
we compute their extra lengths (over shortest paths):

extra length =

length(contextual)-length(shortest)
length(shortest)

.

By re-running our experiments for destinations at different dis-
tances and binning the corresponding results, we find that the con-
textual paths do not take much longer (Figure 8). Extra walking
length is very limited for all destinations: for destinations at 500m,
the contextual path requires 60 meter (1 minute) longer routes; for
those at 2km, it requires 104 meter (2 minute) longer routes. On
average, the median extra length is less than 6%.

4.1.6 Area Density
One might now wonder to which extent positive results are at-

tainable in low-density areas of the city as well (e.g., outside the
town historical center). To test whether spatial factors might influ-
ence our results, we divide the city into cells and compute the mean
desirability score in each cell. More specifically, we pin down a
grid of points on the map, where the points are equally spaced by
1500 meters; centered around those points, we draw squared cells
with edge length of 4400 meters. This procedure results into a
set of overlapping cells that uniformly cover the whole city. We
then consider three distinct spatial factors for each cell as prox-
ies for density: the number of street segments, of unique venues,
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Figure 8: Our contextual path’s extra walking length (over the short-
est one) for destinations at increasing distance.
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Figure 9: Difference between the contextual path’s mean desirability
and the shortest path’s for areas of different density. By comparing the
results corresponding to the different bars, we find that they are not
statistically different: area density does not affect the desirability gap.

and of check-ins per square meters. Since those three measures
are strongly correlated (with Pearson coefficients well over 0.85),
we report the results for venue density. Remarkably, we find that
mean desirability does not change with area density (Figure 9), sug-
gesting that there is room for finding contextually-relevant paths in
low-density neighborhoods as well.

4.1.7 Overheads
Our framework’s storage overhead is minimal: loading the entire

graph of the city takes less than 8MB and 4.1 seconds in running
time5. The most demanding operations include training and gener-
ating the venue interestingness predictions (265 seconds), loading
the transition matrices (4.1 seconds), and computing the contextual
cost on each segment (12.9 seconds). However, those operations
can be performed offline, and can be done only once. By contrast,
each contextual path should be generated on-the-fly for each user
request: that is indeed possible as generating a path takes as low as
5.8 milliseconds, on average.

5The results are obtained on a desktop machine with these specifi-
cations - CPU: Intel i5-3210 4-Core@2.50GHz, RAM: 2GB

5. DISCUSSION
User Study. Our evaluation has been quantitative and has not
focused on whether users would find our proposal effective. To
that end, as part of future work, we have conducted a preliminary
user study involving 15 participants in Barcelona. Each partici-
pant is shown four paths between Arc de Triump and Barceloneta.
The participants are asked whether they are familiar with the paths
(i.e., whether they have visited the paths’ area more than once and
clearly remember the area’s offering). The four paths are: a con-
textual path at 2pm (day path), a contextual path at 11pm (night
path), the most popular path, and the shortest path. We choose 2pm
because that is when lunch in Barcelona ends and coffee break fol-
lows, and 11pm because, at that time, dinner ends and bars and
nightlife typically follow. The participants are asked to evaluate
two aspects for each path. The first is how interesting each path is
(on a Likert scale) for activities to be done at 2pm and for activi-
ties to be done at 11pm (we do not tell them which path is which).
More specifically, the participants tell us whether they would take
the suggested path at 2pm (or 11pm), and express their preference
on a scale that goes from 1 (I would not take it at all) to 5 (I would
definitely take it). The second evaluation aspect has to do with
the extent to which the proposed path’s length is acceptable: the
score goes, again, from 1 (totally unacceptable) to 5 (it’s the short-
est path). Among our participants, the percentage of male-female is
62%-38%. The most common age band is that of 25-30. As for fa-
miliarity with the area, all our respondents have lived in Barcelona
for more than a year and have visited the area under study more
than once. All the participants find our proposal’s paths to be of
acceptable lengths (median 4, where 5 means no perceived differ-
ence between our paths and the shortest ones). They also score the
day paths and the night paths highest in the corresponding day and
night contexts (with median 4 on the scale [1,5] for both cases).

Tables 3 and 4 summarize the results by reporting the prob-
ability of observing a certain score for each type of path. For
each of the two situations (2pm, 11pm), we report the participants’
evaluations about the interestingness and acceptability of a variety
of paths: the shortest path; “ours(2pm)” and “our(11pm)”, which
are the paths generated by our system at 2pm and 11pm; “popu-
lar”, which is the path that maximizes the popularity of the venues
across it (context-agnostic); and “long(2pm)” and “long(11pm)”,
which are the contextual paths generated without penalizing for
length (� = 0). Based on the overall scores (reported on the two
rows E[Interestingness] and E[Acceptability]), we see that the
contextual paths are far more interesting than the other paths, and
that they require a minimal extra walking distance (i.e., its walking
overhead is always second to the shortest path). At both 2pm and
11pm, the contextual paths have higher expected interestingness
than the other paths.

Table 3: Summary of results for paths at 2pm
score shortest ours(2pm) ours(11pm) popular long(2pm)

Interestingness

1 0 0 0 0 0.33
2 0.13 0.2 0.13 0.2 0.07
3 0.4 0.2 0.27 0.2 0.27
4 0.33 0.27 0.4 0.53 0.07
5 0.13 0.33 0.2 0.07 0.27

E[Interestingness] 3.43 3.73 3.67 3.47 2.91

Acceptability

1 0 0 0 0.07 0.93
2 0.07 0 0 0 0
3 0 0.07 0.27 0 0
4 0.2 0.4 0.33 0.47 0
5 0.73 0.53 0.4 0.47 0.07

E[Acceptability] 4.59 4.46 4.13 4.3 1.28

Interestingness from check-ins data. We have not shown any re-
sult for notions of interestingness other than venue popularity, not

280



Table 4: Summary of results for paths at 11pm
score shortest ours(2pm) ours(11pm) popular long(11pm)

Interestingness

1 0 0 0 0 0.33
2 0.13 0.27 0.07 0.13 0.13
3 0.4 0.27 0.47 0.4 0.27
4 0.33 0.2 0.27 0.4 0.07
5 0.13 0.27 0.2 0.07 0.2

E[Interestingness] 3.43 3.5 3.63 3.41 2.68

Acceptability

1 0 0.07 0 0 0.87
2 0 0 0 0.07 0
3 0 0 0.07 0 0.13
4 0.27 0.4 0.27 0.4 0
5 0.73 0.53 0.67 0.53 0

E[Acceptability] 4.73 4.32 4.64 4.39 1.26

least because of lack of data. Since we have proposed a framework
(i.e., a module with plug-and-play components), one could plug a
different “desirability component” in the future (this simply trans-
lates into having different values for y(v

i

; c)).

Classes of Applications. Most of the past work has focused on
navigation systems for tourists. Our model is able to generate dif-
ferent paths for tourists (by setting the familiarity coefficient ↵

u

to a low value) and residents (by setting it to a high value) alike.
This coefficient captures the idea that, while walking in a neigh-
borhood, those not familiar with it rely on visible landmarks and
avoid frequent turns (i.e., they do minimize angular changes), while
residents are likely to know short-cuts and are comfortable with fre-
quent turns that end up minimizing metric distance.

Modeling of Spatial Layout. Previous navigation approaches have
modeled space in a coarse-grained way. Typically, the city layout
is divided into cells, and those cells will then be nodes in the city’s
navigation graph. With such a representation, back-tracking and U-
turns are not uncommon issues. To partly fix those issues, we have
departed from this traditional spatial representation and have used
space syntax. It is a simple graphical method that describes the way
the different parts of space (e.g., street segments, entire areas) are
connected to one another, mimicking the way individuals mentally
deal with space and navigation. We are stressing the importance of
researching alternative spatial representations not to unfairly criti-
cize past work (after all, its focus was not on spatial modeling) but
to stimulate further research in this very direction.

Engineering aspects. In the future, it might be also worth explor-
ing two main engineering aspects. The first is the way we have im-
plemented the axial map. Our current implementation uses Open-
StreetMap’s line representation, which is able to deal with curves
but has some imperfections. As such, alternative approaches of im-
plementing the axial map (e.g., raster analysis) might be explored.
The second aspect has to do with the predictions of venue popular-
ity. The factorization machine currently neglects the interactions
between the variables (collinearity). Future work that will focus
on venue popularity predictions might initially try a polynomial re-
gression, or build a regressor that deals with high order.

6. CONCLUSION
The ethnographic observations made by urban sociologists such

as Jane Jacobs, William Whyte, and Jan Gehl have resulted in
workable principles about how people view, understand, and use
city spaces [6, 13, 36]. These principles have drawn the atten-
tion of those who design cities but not of those who design naviga-
tion tools. Our framework has showed how to systematically apply
some of those principles to the problem of automatic wayfinding,
making important connections to the psychology of spatial cogni-

tion. In addition to principled spatial representations, one also has
to consider contextual changes. Within the relatively unchanging
spatial containers of a city, activities shift cyclically, and our frame-
work accounts for contextual changes with state-of-the-art predic-
tion techniques. To test the extent to which our framework is ef-
fective in suggesting personalized recommendations, we evaluated
our proposal on real-data (by relying on Foursquare check-ins as a
measure of popularity) and by conducting a preliminary user study
in the city of Barcelona. Both evaluation suggest that the system is
effectively able to recommend contextually-relevant paths that are
only slightly longer than the shortest ones.

Our proposal could be readily extended in two main ways. First,
our measure of contextual cost should be further validated to ascer-
tain whether it actually reflects people’s preferences. Second, other
proxies for venue interestingness should be explored.
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