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An occupation is comprised of interconnected tasks, and it is these tasks, not occupations
themselves, that are affected by AI. To evaluate how tasks may be impacted, previous
approaches utilized manual annotations or coarse-grained matching. Leveraging recent
advancements in machine learning, we replace coarse-grained matching with more precise
deep learning approaches. Introducing the AI Impact (AII) measure, we employ Deep Learning
Natural Language Processing to automatically identify AI patents that may impact various
occupational tasks at scale. Our methodology relies on a comprehensive dataset of 17,879
task descriptions and quantifies AI’s potential impact through analysis of 24,758 AI patents
filed with the United States Patent and Trademark Office (USPTO) between 2015 and 2022.
Our results reveal that some occupations will potentially be impacted, and that impact is
intricately linked to specific skills. These include not only routine tasks (codified as a series of
steps), as previously thought, but also non-routine ones (e.g., diagnosing health conditions,
programming computers, and tracking flight routes). Furthermore, AI’s impact on labour is
limited by the fact that some of the occupations affected are augmented rather than replaced
(e.g., neurologists, software engineers, air traffic controllers), and the sectors affected are
experiencing labour shortages (e.g., IT, Healthcare, Transport).

future of work | AI | patents |

Introduction

The rapid advancement of Artificial Intelligence (AI) has undeniably created
new business opportunities (1) but has also reshaped the labor market (2–5),

simultaneously reducing hiring in non-AI positions and altering the skill requirements
of remaining job postings (6). Exemplifying this phenomenon, the manufacturing
sector has witnessed the automation of previously human-intensive assembly line
tasks, while chatbots and virtual assistants have taken over routine inquiries
and support functions in customer services (7). Recent AI advances, including
generative AI, may further (re)shape occupations over the long term, fuelling growth
in certain sectors and eroding others (8). AI automation has not only streamlined
processes but has also generated economic benefits (9), enabling companies to
allocate resources more effectively and to redirect human capital towards higher-
value, creative, and complex tasks—(re)skilling and upskilling their workforce (10).
However, this transformation has given rise to divergent viewpoints, with some
scholars arguing for a future characterized by AI occupation displacement and mass
unemployment (11, 12), while others posit that the AI revolution has the potential
to enhance both productivity and quality of work (13).

Previous literature on AI impact on occupations has primarily focused on two
classes of methodologies. The first measures the impact of AI on occupations.
More specifically, it breaks down occupations into a finite set of abilities (e.g.,
manual dexterity, persuasion) and measures the impact on those abilities. Two
examples that illustrate this approach are the Frey and Osborne’s (14) method
and the AI Occupational Exposure (AIOE) method (4). Frey and Osborne’s
method uses 9 abilities extracted from O*NET database, covering 70 occupations
that were manually labeled and extended with a classifier to 702, including
roles like clergy, dentists, and chief executives. In contrast, AIOE uses 52
abilities derived from the O*NET database, focusing on 10 Electronic Frontier
Foundation (EFF) applications such as image and speech
recognition, and language modeling. However, both of these
methods share a common limitation. Their reliance on coarse-
grained abilities in the computation of AI’s impact may not
fully capture the nuances of AI. Consider, for example, the
ability of information ordering. Methods based on abilities

Significance Statement

We introduce the AI Impact (AII)
measure, utilizing Deep Learning
Natural Language Processing to au-
tomatically identify AI patents affect-
ing occupational tasks. Our findings
reveal that:

1. AI’s impact on occupations de-
fies simple categorizations of
task routineness. It intricately
affects specific skills within
tasks, from routine (e.g., scan-
ning items) to non-routine (e.g.,
decision-making under stress
by air traffic controllers), chal-
lenging the assumption that
only routine tasks are suscep-
tible.

2. AI’s impact on labor may be
limited by the fact that some
of the affected occupations
are augmented rather than re-
placed, and some of the sec-
tors affected are experiencing
labor shortages.

Author affiliations: 1Nokia Bell Labs, Cambridge, United
Kingdom

Author contributions: A.A.S., M.C., and D.Q. designed
research; A.A.S. performed research; A.A.S. and M.C.
analyzed data; and A.A.S., M.C., and D.Q. wrote the
paper.

The authors declare no competing interest.
*To whom correspondence should be addressed. E-
mail: querciacantab.net

June 24, 2024 — vol. XXX — no. XX — 1–26

ar
X

iv
:2

31
2.

04
71

4v
3 

 [
cs

.C
Y

] 
 2

1 
Ju

n 
20

24



may categorize tasks that involve organizing information in
the same way, without distinguishing between the highly
structured and complex information ordering required for
database design and the simpler, routine information tasks
of librarians such as alphabetizing files (15).

The second class measures the impact of AI on tasks rather
than occupations. This concept is illustrated by Brynjolfsson
et al.’s Suitability for Machine Learning (SML) method (3),
which measures the impact of AI using a comprehensive set
of 18,156 tasks spanning 964 different occupations. However,
SML relies on the assessments of crowdworkers to determine
the suitability of specific tasks for machine learning. This
reliance may introduce subjective biases from annotators
(e.g., varying levels of expertise or cultural factors may lead
to inconsistencies), and poses challenges in terms of scalability.
Also, similar to Frey and Osborne’s and AIOE, SML is limited
by the static nature of its one-time manual labeling. As
technology advances and new capabilities emerge such as
Large Language Models (LLMs), relying solely on a fixed set
of abilities or subjective assessments of task suitability for
automation becomes increasingly inadequate. For example, a
copywriter is likely to be impacted by LLMs (16). However,
if one were to examine copywriters at different points in
time, such as in 2010 or 2015, the impact of AI on them
would not be constant but would drastically change since
language models were not as powerful back in 2010 as
they are today. To fully capture the impact of a fast
moving technology such as AI, therefore, it is crucial for
methods to be adaptable to the ever-evolving technological
advancements. To gauge the likelihood of automation,
it is essential to identify which systems are poised for
construction and commercialization. Annual business surveys
serve as a source for measuring the adoption of automation.
However, they may be subject to biases (e.g., respondents
may over-report positive aspects, prioritize certain business
operations, potentially neglect others, and interpret survey
questions subjectively without standardized criteria) and are
infrequently updated (17). An alternative, more objective
source is patents. Patents are a typical source in scholarly
work to identify emerging technological innovations (18–20).
Prior work used patents to study the effect of automation
and employment changes (21, 22). By analyzing the text
of U.S. patents granted between 1976 and 2014, Mann et
al. (21) showed that the effect of automation differs across
sectors. For example, the manufacturing industry, where
most robots are used, experienced employment losses, while
the service sector experienced employment gains; a finding
that aligns with those reported by Autor and Dorn (23).
More broadly, patents provide insights into emerging systems
and technologies (24), leading Webb to study AI innovations
by comparing occupational task descriptions with patent
titles (2). This method, employing a dictionary approach
to identify verb-noun pairs associated with both tasks and
patent titles, has limitations though. Another method,
similar in its approach to Webb’s term matching, employs
a normalized term matching approach to determine the
similarity between tasks and patents (25), and does so to the
specific area of robotics rather than AI. The method most
similar to ours was proposed in (26, 27), in which, using word
embeddings, patents are matched with broad occupation
categories from the American Community Survey. However,

that level of categorization is not suitable for researching
the characteristics of specific jobs. Overall, this second
class of approaches has used either term matching or word
embedding. The problem is that term matching does not
capture the semantic meaning of words (e.g., it does not
distinguish between ‘bank’ as in ‘data bank’ or as in a financial
institution) (28), and word embedding does not account for
word ordering (e.g., ‘data entry and analysis’ and ‘analysis of
entry data’ are considered similar based on word embeddings
yet are two different tasks). As a result, these methods either
miss relevant patents or return spurious task-patent matches,
as detailed in Tables S5 and S6.

To overcome these limitations, we introduced and validated
the AI Impact (AII) measure. AII utilizes 19,498 task descrip-
tions from O*NET and assesses AI’s potential impact through
innovations found in 24,758 AI patents filed with the United
States Patent and Trademark Office (USPTO) from 2015 to
2022. Built on Sentence-T5 (ST5)(29), a natural language
processing-focused deep learning framework (Figure 7), the
method gauges semantic similarity between occupation task
descriptions and patent descriptions (explained in “Datasets”)
by embedding not individual words but the entire document
(e.g., the entire patent’s abstract), allowing for considering
both semantic meaning and word ordering. The AII score is
calculated in three steps. Firstly, the method identifies the
most similar patent for each task based on maximum cosine
similarity. Secondly, it categorizes a task as AI-impacted if its
similarity with the most similar patent surpasses a threshold
at the 90th percentile, as previous literature suggested (24)
and this work further empirically validated (“Task-Patent
Matching” in Supplementary Material). We select, for each
task, the closest patent rather than counting the number
of closely linked patents. This approach provides a more
targeted understanding of the specific innovations or solutions
directly relevant to that particular task, avoiding dilution
of the analysis with potentially less pertinent or peripheral
patents. Also, given that patents can be general, our approach
addresses this by using the text not only in titles, as previous
approaches did (2), but also in abstracts, which are more
likely to contain application domains or references to specific
tasks (illustrated in Table S4). Finally, the AII score for
an occupation is computed by dividing the number of tasks
impacted by AI patents by the total tasks for that occupation
(elaborated in “Measuring AI Impact (AII) on Occupation
Tasks”). For insights into AI’s economic ramifications, the
method aggregates AII scores for each occupation at industry
sector-level.

Results

Validation with Historically Impacted Occupations. To begin
to understand the nature of the AII score, we first validated
it empirically through two historical case studies: robots
and software. We chose them for three reasons. First, their
introduction into the labor market has been associated with
reductions in employment and wages (30, 31). Second, due
to the recent emergence of these technologies, they are likely
to provide insights into how the economy may respond to the
introduction of AI. Lastly, these two historical cases have been
used in previous works to empirically assess methodologies
similar to ours (2), offering a basis for comparison.
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Table 1. 20 most- and least-impacted occupations ranked by the AII (Artificial Intelligence Impact) measure.

Rank Most-impacted Least-impacted
1 Cardiovascular Technologists and Technicians Pile Driver Operators
2 Sound Engineering Technicians Dredge Operators
3 Nuclear Medicine Technologists Aircraft Cargo Handling Supervisors
4 Air Traffic Controllers Graders and Sorters, Agricultural Products
5 Magnetic Resonance Imaging Technologists Insurance Underwriters
6 Electro-Mechanical and Mechatronics Technologists and Technicians Floor Sanders and Finishers
7 Orthodontists Reinforcing Iron and Rebar Workers
8 Power Distributors and Dispatchers Farm Labor Contractors
9 Neurologists Administrative Services Managers
10 Industrial Truck and Tractor Operators Rock Splitters, Quarry
11 Public Safety Telecommunicators Brokerage Clerks
12 Computer Numerically Controlled Tool Programmers Podiatrists
13 Security Guards Helpers–Painters, Paperhangers, Plasterers, and Stucco Masons
14 Remote Sensing Scientists and Technologists Shipping, Receiving, and Inventory Clerks
15 Machinists Cooks, Short Order
16 Radiologists Team Assemblers
17 Atmospheric and Space Scientists Proofreaders and Copy Markers
18 Computer Numerically Controlled Tool Operators Butchers and Meat Cutters
19 Textile Knitting and Weaving Machine Setters, Operators, and Tenders Door-to-Door Sales Workers, News and Street Vendors, and Related Workers
20 Medical Transcriptionists Segmental Pavers

We therefore adjusted the AII score to encompass exposure
to robots and software rather than AI (methodology and
results detailed in “Impact of Robots and Software” in
Supplementary Material) by focusing on patents related to
these two technologies. We studied how robot and software
exposure affected employment and wages using US census
data from 1980 to 2010. Following Webb’s methodology (2),
which controlled for industry effects, educational levels, wage
polarization, and off-shorability, we found that introducing
robots led to a 9% decrease in employment and a 4% decrease
in wages, and that introducing software resulted in a 10%
decrease in employment and a 7% decrease in wages during
this period. These findings align with Webb’s, indicating that
occupations exposed to robots or software have decreased
in number and pay lower wages. However, Webb’s method,
which relies on keyword matching, sometimes includes patents
that should not be matched with certain job tasks (as
detailed in “Previous Attempts to Link Tasks to Patents”
in Supplementary Material), leading to larger decreases and
an overestimation of AI’s potential impact.

Most- and Least-Impacted Occupations. We compared the
potentially most-impacted (highest AII scores) occupations
with the least-impacted (lowest AII scores) occupations
(Table 1 only reports the 20 most- and least-impacted
occupations for brevity and comparability with previous
methods), and did so by thematically analyzing the AI patents
associated with the tasks of each group’s occupations (as
described in “Thematic Analysis on Occupations and Industry
Sectors”).

Most-impacted Occupations. The highest-impact occupations
mainly consist of white-collar occupations such as cardio-
vascular technicians, sound engineers, nuclear medicine
technologists, air traffic controllers, and magnetic resonance
imaging technologists. Indeed, the AII score, binned by
education levels from high school to Master of Sciences, shows
that the highest impact is seen for jobs requiring degrees
from community colleges or Bachelor’s degrees (Figure 1)
rather than high school diplomas or lower qualifications.
Highest-impacted occupations are primarily found in the

High School Associate Bachelors Masters
0.000

0.025

0.050

0.075

0.100

0.125

AI
I

Fig. 1. AII score binned by the level of education: high school, associate degrees
from community colleges, bachelor’s degrees, and master’s degrees in science. This
binned score was obtained by averaging the scores across all occupations in a given
education category, weighted by the total employment for those binned occupations.

healthcare, information technology, and manufacturing. Their
tasks can be completed in a very specific sequence, and the
inputs and outputs of these tasks can be expressed in a
machine-readable format. To see how, we examined the types
of tasks that patents have automated, and organized the
patents into three themes: healthcare, information technology,
and manufacturing (Table 2). For the theme of healthcare,
from 2015 to 2022, 60% of the tasks done by cardiovascular
technologists and 48% of those done by magnetic resonance
imaging (MRI) technologists have been impacted by patents
automating health records’ management and analyzing MRI
scans. In addition to the advanced healthcare occupations,
we observed a significant number of patents impacting less
skilled healthcare personnel including, for example, patents
recording and evaluating patient questionnaires. For the
theme of information technology, over the same five years, 47%
of tasks done by software developers and 40% of those done
by computer programmers have been impacted by patents
automating programming tasks and developing workflows.
For the theme of manufacturing, over the same five years,
45% of tasks done by truck and tractor operators and
40% of earth drillers’ tasks have been automated. These
automated tasks are planning processes such as water-well
drilling rigs and driving through electric-powered trucks.
Previous qualitative analyses based on ethnographic work
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Table 2. The most-impacted occupations based on AII scores. Each occupation’s score is calculated as the number of impacted tasks divided
by the total number of tasks for that occupation. For each occupation, a task-patent pair is presented, corresponding to the most impacted
task by the patent (i.e., the patent with the highest similarity score to the task) which is determined by calculating the textual similarity between
the task’s description and a patent’s title plus abstract.

Rank Occupation Sector Task Patent Similarity
# Impacted

Tasks
Total
Tasks AII

1 Cardiovascular Technologists and
Technicians

Healthcare Observe gauges, recorder, and video screens [...]
during imaging of cardiovascular system.

Automated analysis of vasculature in
coronary angiograms

0.8753 16 25 0.64

2 Sound Engineering Technicians Arts and entertain-
ment

Record speech, music, and other sounds on recording
media, using recording equipment.

Media capture and process system 0.8293 8 14 0.57

3 Nuclear Medicine Technologists Healthcare Process cardiac function studies, using computer. Electrocardiogram analysis 0.8645 9 17 0.53
4 Air Traffic Controllers Transportation Determine the timing or procedures for flight vector

changes.
Constraint processing as an alterna-
tive to flight management systems

0.8298 12 23 0.52

5 Magnetic Resonance Imaging Tech-
nologists

Healthcare Operate optical systems to capture dynamic magnetic
resonance imaging (MRI) images [...]

MRI system and method using neu-
ral network for detection of patient
motion

0.8615 12 23 0.52

6 Electro-Mechanical and Mechatron-
ics Technologists and Technicians

Manufacturing Train robots, using artificial intelligence software or
interactive training techniques [...]

Backup control based continuous
training of robots

0.8846 18 35 0.51

7 Orthodontists Healthcare Study diagnostic records, such as medical or dental
histories [...] to develop patient treatment plans.

Patient-Specific Therapy Planning
Support Using Patient Matching

0.8460 5 10 0.50

8 Power Distributors and Dispatchers Utilities Control, monitor, or operate equipment that regulates
or distributes electricity or steam [...]

Power grid aware machine learning
device

0.8562 7 15 0.47

9 Neurologists Healthcare Interpret the results of neuroimaging studies, such as
[...] Positron Emission Tomography (PET) scans.

Pet quantitative localization system
and operation method thereof

0.8352 11 24 0.46

10 Industrial Truck and Tractor Opera-
tors

Manufacturing Move controls to drive gasoline- or electric-powered
trucks, [...]

Autonomous Truck Unloading for Min-
ing and Construction Applications

0.8301 5 11 0.45

11 Public Safety Telecommunicators Public administra-
tion

Test and adjust communication and alarm systems, and
report malfunctions to maintenance units.

Security-Relevant Diagnostic Mes-
sages

0.8237 8 18 0.44

12 Computer Numerically Controlled
Tool Programmers

Manufacturing Determine the sequence of machine operations, and
select the proper cutting tools [...]

Methods and apparatuses for cutter
path planning and for workpiece ma-
chining

0.8376 7 16 0.44

13 Security Guards Administrative &
support services

Operate detecting devices to screen individuals and
prevent passage of prohibited articles into restricted
areas.

Touchless, automated and remote
premise entry systems and methods

0.8566 6 14 0.43

14 Remote Sensing Scientists and Tech-
nologists

Manufacturing Develop automated routines to correct for the presence
of image distorting artifacts, such as ground vegetation.

Method for plantation treatment
based on image recognition

0.8413 10 24 0.42

15 Machinists Manufacturing Machine parts to specifications, using machine tools,
such as lathes, milling machines, shapers, or grinders.

Machining equipment system and
manufacturing system

0.8440 12 29 0.41

16 Radiologists Healthcare Perform or interpret the outcomes of diagnostic imaging
procedures including magnetic resonance imaging
(MRI), computer tomography (CT), positron emission
tomography (PET), [...]

Systems and methods for integrating
tomographic image reconstruction
and radiomics using neural networks

0.8569 7 17 0.41

17 Computer Numerically Controlled
Tool Operators

Manufacturing Implement changes to machine programs, and enter
new specifications, using computers.

Registering collaborative configura-
tion changes of a network element in
a blockchain ledger

0.8370 11 27 0.41

18 Atmospheric and Space Scientists Scientific and tech-
nical services

Analyze historical climate information, such as precip-
itation or temperature records, to help predict future
weather or climate trends.

Combining forecasts of varying spa-
tial and temporal resolution

0.8429 11 27 0.41

19 Textile Knitting and Weaving Machine
Setters, Operators, and Tenders

Manufacturing Set up, or set up and operate textile machines that
perform textile processing [...]

Parameter Manager, Central Device
and Method of Adapting Operational
Parameters in a Textile Machine

0.8477 8 20 0.40

20 Medical Transcriptionists Healthcare Transcribe dictation for a variety of medical reports [...] Methods for improving natural lan-
guage processing with enhanced
automated screening for automated
generation of a clinical summariza-
tion report and devices thereof

0.8367 6 15 0.40

Healthcare Information Technology Manufacturing
2016
patient, image, planning
2017
module, robot, machine
2018
patient, device, medical
2019
computer, test, state
2020
neural network, data, analysis
2021
control, planning, path
2022
control, image, neural network

Cardiovascular Technologists and Technicians

Nuclear Medicine Technologists

Magnetic Resonance Imaging Technologists

Orthodontists

Neurologists

Radiologists

Atmospheric and Space Scientists

Remote Sensing Scientists and Technologists

Sound Engineering Technicians

Public Safety Telecommunicators

Electro-Mechanical Technologists and Technicians

Textile Knitting and Weawing Machine Operators

Industrial Truck and Tractor Operators

Computer-Controlled Tool Operators

Power Distributors and Dispatchers

Computer-Controlled Tool Programmers

Machinists

Security Guards

0 82 4 6

Number of newly impacted tasks

Medical Transcriptionists

Air Traffic Controllers

Fig. 2. The number of newly impacted tasks each year for the most affected occupations, combined with the most frequently occurring words in the patents influencing those
tasks, are organized around the themes of healthcare, information technology, and manufacturing. These were derived qualitatively and describe the main themes emerging
from the patents. Between 2016 and 2018, patents mentioned “patient”, “image”, “planning”, “medical”, “device” matched tasks in healthcare. Between 2019 and 2021, patents
mentioned “data”, “analysis”, and “neural networks” matched tasks in information technology. Between 2021 and 2022, patents mentioned “control”, “planning”, “path”, “user”,
“image”, and “neural network” matched tasks in manufacturing.
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on long-haul truck driving (perceived as a prime target for
AI displacement) have indeed shown that truckers are not
being displaced by intelligent systems—the trucker is though
still in the cab driving (32). Instead, they are experiencing
the emergence of intelligent systems that monitor their body
directly. Such emergence has not been instantaneous but has
evolved over the years with the introduction of positioning
systems, then smartwatches, and now even more advanced
health monitoring devices (33, 34). The problem is that
previous work has assumed that, over those five years, the
potential impact was constant (4). That was mainly because
they could not factor in innovations as they were coming
in. By contrast, our score is adjusted based on incoming
innovations, and, as such, changes over time.

By analyzing the annual increase in impacted tasks and
examining the most frequently occurring words in patents’
abstracts each year (Figure 2), we identified two categories
of highly impacted occupations. The first category includes
occupations that experienced a sudden impact, while the
second category includes occupations that faced continuous
impact over time.

Occupations that underwent sudden impacts are pre-
dominantly within the healthcare sector. This impact
became most pronounced in 2016, when eight new tasks
were affected, gradually decreasing to just one new impacted
task by 2019. In 2016, patents began to significantly impact
healthcare by automating medical imaging and diagnosis
through machine learning models, devising treatment plans
and medical devices, and recording and analyzing patient
data. This impact continued into 2017 and 2018, although
to a lesser degree, focusing on predicting optimal radiation
therapy doses, dental treatment plans, and processing medical
patient data.

Occupations that sustained continuous impact over time
are primarily in information technology and manufacturing.
In the information technology sector, occupations such as
software developers, and in manufacturing, occupations such
as earth drillers, saw consistent increases from zero new
impacted tasks in 2016 to six new impacted tasks in 2019.
In information technology, the potential impact of patents
became noticeable in 2017 when they began training robots
to design and execute iterative tests on chemical samples,
working on aerial and satellite imagery to create products
such as land cover maps, and implementing speech recognition
and natural language processing on audio. This impact
steadily rose and extended into 2022, with patents integrating
machine learning into software systems, automating tasks
such as troubleshooting networks and code reviews. In
manufacturing, patent potential impact emerged in 2018,
focusing on optimizing supply chain logistics and planning
material dumping operations. This impact persisted into 2022,
further supporting predictive maintenance and operational
optimization such as determining aircraft conditions, with
patents integrating reinforcement learning and other advanced
neural networks.

Least-impacted Occupations. The least-impacted occupations
mainly consist of blue-collar occupations such as pile-driver
operators, dredge operators, aircraft cargo handling su-
pervisors, agricultural graders and sorters, and insurance
underwriters. Again, the AII score, binned by education
levels, shows that the lowest impact is seen for jobs re-
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Fig. 3. Sector-level AII scores for: (a) all sectors; (b, left) sectors with lowest rate of
change from 2015 to 2020; and (b, right) sectors with highest rate of change.

quiring a high school diploma or less (Figure 1). These
occupations are primarily found in agriculture, transportation,
accommodation and food services, and construction sectors,
where the core tasks and responsibilities revolve around
physical and manual labor and typically do not require a
wide range of complex mental or physical activities, nor
do they involve abstract reasoning. In agriculture, least-
impacted tasks involve food inspection and dairy management
for livestock. In transportation, such tasks involve scheduling
and resource allocation for airline operations, engine sound
control, and vehicle dispatching. In accommodation and
food services, tasks include monitoring and recording food
temperatures. In construction, such tasks involve the
maintenance and operation of equipment and machinery. In
addition to these sectors, by examining occupations with
nearly zero AII scores, we found another least impacted set
of occupations: managerial ones. Contrary to the previous
least impacted occupations which involve manual labor or
dexterity, managerial occupations typically require human
interactions and scarce expert knowledge tacitly acquired
over years of experience, having tasks ranging from contract
negotiation to proposal review to internal assessments and
audits.

However, as we detail next, the impact of AI on labor
is limited by two main factors: (1) some of the affected
occupations are augmented rather than replaced; and (2) the
sectors affected are experiencing labor shortages.

Augmented rather than replaced occupations. Our AII cap-
tures AI’s potential for automation. However, previous work
has differentiated between automation and augmentation. To
account for that, we implemented Autor et al.’s method (26)
to compute AI’s potential for augmentation (explained in
“Materials and Methods”). We found that certain occupations
will not be replaced by AI, but instead will be augmented
by it (top left quadrant in Figure 4). For example, the
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Fig. 4. Automation vs. augmentation using patent similarity to tasks and micro-titles
defined in the Census Alphabetical Index of Occupations and Industries (CAI) (26).

role of a hearing aid specialist involves a significant human
element, especially in understanding and responding to
patients’ emotional, psychological, and physical needs. This
is reflected in the lack of patents that match the task of
“counseling patients and families on communication strategies
and the effects of hearing loss”; a task that requires empathy
and emotional intelligence, which is likely no current AI
innovation can automate. Another example is that of
electrical and electronics repairers, which relies heavily on
technical skills, detailed knowledge, and hands-on interaction.
Consider that occupation’s task of “consulting with customers,
supervisors, or engineers to plan the layout of equipment or to
resolve problems in system operation or maintenance”. While
automation can assist in some aspects, human expertise and
decision-making are crucial. This task has not been matched
with any patent. In general, for occupations that may be
augmented by AI, AI will advise, coach, and alert decision-
makers as they apply expert judgment.

Affected sectors experiencing labour shortages. To ascertain
whether AI patents are linked to labor supply constraints
or to labor demand in a sector, we correlated the AII
industry sector scores with the annual vacancy rates from
each sector in 2022. We found that AII and vacancy rates
are positively correlated. After removing the outlier sector
of Accommodation and Food Services—positioned more
than two standard deviations away from the regression line
(Figure S7) —the correlation was positive and stronger, with
a Pearson’s correlation coefficient of r = 0.58 with p = 0.02
(Figure 5). This suggests that sectors potentially impacted
by AI are currently experiencing labor shortages.

Highly-impacted sectors include healthcare, information
technology, and manufacturing, which aligns with our the-
matic analysis of tasks within the most-impacted occupations.
These sectors have experienced a significantly high rate of
impact. From the thematic analysis, two possible explana-
tions emerge. The first explanation lies in the nature of the
tasks within these sectors, which are likely to be replaced
by AI-enhanced hardware. For example, in healthcare,
tasks involving the use of X-rays or MRI scans, such as
those used by radiologists, have been automated by patents

on advanced medical equipment and devices. Similarly,
in manufacturing, tasks that involve the examination of
chemical or biological samples, such as those performed by
food science technicians, can now be executed The second
explanation is that the occupations within these sectors entail
tasks demanding extensive data analysis and processing. In
information technology, film editors, for example, engage in
video data editing, which our patent analysis found to have
been streamlined by AI-based software. Likewise, scientists
in healthcare, information technology, or manufacturing often
handle large volumes of data, and recent patents deal with
both structured and unstructured data (e.g., using deep-
learning for computational biology (35)).

Least-impacted sectors, on the other hand, include con-
struction, accommodation and food services, real estate,
education, public administration, and finance and insurance.
These sectors have experienced a significantly low rate
of impact. From the thematic analysis, three possible
explanations emerge. The first explanation centers on the fact
that occupations within certain sectors are often associated
with low-skilled or physical/manual labor. For instance,
in construction, tasks range from assembling solar panels
to maintaining pipe systems to operating various drills,
all of which require physical labor. Additionally, manual
dexterity is challenging to automate. In public administration,
numerous occupations, such as police officers and firefighters,
still require manual skills. The second explanation is that
occupations within certain sectors demand basic and non-
specialized skills. For instance, in accommodation services,
the tasks of waiters and baristas typically involve minimal
specialized knowledge or vocational training, such as serving
food and drinks. Similarly, in real estate, brokers or clerks
primarily require training in overseeing transactions and han-
dling tasks related to office operations.The third explanation
is that occupations within certain sectors often require a high
level of skill and involve extensive interpersonal interactions.
For instance, in managerial positions (e.g., CEOs), tasks
typically encompass responsibilities such as delegating tasks,
attending events and meetings, and negotiating contracts - all
of which heavily rely on human interpersonal communication.
Similarly, in education, a teacher’s role primarily revolves
around delivering educational materials in person, a task
that demands both physical presence and a higher level of
education and specialized knowledge. In the legal sector,
potentially impacted occupations include those involved in
drafting legal documents or transcribing pretrial and trial pro-
ceedings, such as court reporters, in alignment with previous
qualitative analyses on legal occupations (36). Conversely,
roles requiring the design of bespoke legal solutions remain
unaffected. Notably, client-facing tasks in the legal sector
are also not impacted, resulting in an overall expectation of
limited impact on the legal sector. Finally, in the financial
sector, there are still occupations that necessitate human
interactions, such as clerks, sales agents, and tellers.

Discussion

Consensus and Discrepancies in Previous Literature. Unlike
previous methods for assessing the potential impact of AI on
occupations, which either rely on a finite set of abilities (e.g.,
manual dexterity) linked to specific occupations (4, 14) or
employ subjective evaluations to determine tasks’ suitability
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Fig. 5. Job vacancy rates by sector vs. sector-level AII. The sector of Accommoda-
tion and Food Services was positioned more than two standard deviations away from
the regression line (i.e., considered as an outlier) and was removed. The original
plot is in Supplementary Material.

for automation (3), our AII measure provides an objective
approach by leveraging patent data to capture the dynamic
landscape of technological advancements in AI.

To position our findings, we explore the consensus or lack
thereof of which occupations will be potentially impacted by
AI in the literature.

Consistent results in the literature. Frey and Osborne’s (14),
AIOE (4), SML (3), and Webb’s (2) concur that low-skilled
occupations typically involving human labor are not impacted
by AI. These occupations are typically found in industry
sectors such as construction, where tasks primarily involve
manual labor and the operation of machinery. Our AII
measure aligns with these observations by categorizing such
occupations as among the least impacted by AI.

Inconsistent results in the literature. While there has been a
clear consensus in previous literature regarding manual labor
occupations, we have identified four types of occupations for
which consensus has been so far lacking. These categories
include: occupations requiring basic and non-specialized
skills; occupations requiring high skills and interpersonal
interaction-based occupations; those where tasks are replaced
by AI-enhanced hardware; and those involving extensive data
analysis and processing.

Occupations that require basic and non-specialized skills
(least impacted according to our approach). Frey and
Osborne’s findings (14) indicated that occupations within
the accommodation and food services sector (e.g., cooks,
dishwashers, waiters, bartenders) are highly-impacted.
Similarly, Webb’s findings suggest that non-routine
manual occupations are highly impacted; there are
patents matching those occupations, which may well
be coarse-grained matches, as exemplified in Table S5.

However, SML (3) and AIOE (4) found the very same
occupations to be among the least-impacted. Our
approach aligns with SML and AIOE, identifying these
occupations as among the least-impacted due to the
absence of AI patents automating the manual tasks
associated with them.

Occupations that are highly-skilled and involve interpersonal
interactions (least impacted according to our approach).
AIOE (4) found that occupations requiring high skills
and interpersonal interactions, such as those in the
education sector (e.g., teachers) or managerial positions
(e.g., CEOs), are highly-impacted. Similarly, Webb found
that occupations that require interpersonal tasks are
hard to automate (2). In contrast, SML (3) found
these occupations, particularly managerial positions,
to be among the least impacted, aligning with Frey
and Osborne’s method (14). However, in the case
of SML, there was a distinction within occupations
involving interpersonal interactions. While SML found
managerial positions to be among the least impacted,
it identified occupations such as concierges, which also
involve interpersonal interactions, as more likely to be
impacted by AI. Upon closer examination of the SML
method, which relies on rubrics (i.e., a type of scoring
guide for crowdworkers to assess the suitability of tasks
for machine learning, as shown in Table S2, we noted
that the corresponding definition in the rubrics entailed
a “wide range of interactions,” making it challenging to
capture their nuances. Additionally, since SML relies
on crowdsourced data, there is a potential for subjective
bias or a lack of full understanding of the nuances of
interpersonal interactions. Finally, interactions were
captured by only one item out of the 23 items in the
rubrics making that item’s contribution to the overall
score limited. Our approach aligns with Frey and
Osborne’s (14), Webb’s (2) and, to some extent with
SML (3) as no AI patents were found to target these
occupations.

Occupations that consist of tasks that are replaced by AI-
enhanced hardware (most impacted according to our
approach). Frey and Osborne (14) discovered that occu-
pations in healthcare, such as MRI and cardiovascular
technologists, which are likely to be replaced by AI-
enhanced hardware, were among the least-impacted. In
contrast, SML (3) and AIOE (4) identified these same
healthcare occupations as among the most-impacted ones.
Webb (2) found that occupations involving non-routine
manual tasks (e.g., operating devices or equipment in
healthcare or manufacturing) to be among the most-
impacted ones. Our approach aligns with SML, AIOE,
and Webb’s method due to the presence of AI patents
automating tasks using AI-enhanced hardware. For
example, in healthcare, patents have automated tasks
such as medical imaging and diagnosis using machine
learning models, the development of treatment plans, the
creation of medical devices, the recording and analysis of
patient data, and even the prediction of optimal radiation
therapy doses, dental treatment plans, and the processing
of medical data.

Occupations that require extensive data analysis and pro-
cessing (most impacted according to our approach).
Frey and Osborne (14) found that occupations that
require extensive data analysis and processing, such
as those in information technology or manufacturing
(e.g., software developers, chemists, aerospace engineers),
were classified as among the least-impacted. In contrast,
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SML (3) and AIOE (4) categorized these very same
occupations as among the most-impacted. Similarly,
Webb (2) identified that occupations involving non-
routine cognitive analytic tasks to be among the most-
impacted ones. Our findings align with SML, AIOE,
and Webb’s method due to the presence of patents
related to tasks that require data analysis and pro-
cessing. For example, patents about training robots
for task execution, image and video processing, speech
recognition, and natural language processing, as well as
the integration of machine learning into software systems.
These patents automate tasks such as troubleshooting
networks, code reviews, optimizing supply chain logistics,
planning material dumping operations, and supporting
maintenance, including determining aircraft conditions.
Our findings are further confirmed by recent works
studying the potential exposure of occupations and tasks
to Generative AI (37, 38). They found that Generative
AI will potentially impact high-skilled, intellectual, or
creative professions (e.g., mathematicians, writers, and
translators), where these models can effectively augment
capabilities in data analysis, writing, and language
translation.

Implications. The impact of AI on occupations carries impor-
tant implications for the workforce. However, when placed our
findings within the context of previous literature, it became
evident that there is a lack of consensus regarding which
occupations will be affected and which will remain unaffected.
As an initial step, we contend that achieving consensus is
crucial to start formulating effective policies to address the
ongoing transformations in the labor market. To initiate this
process, with our findings in mind, we outline three key areas
in which initiatives can be developed.

Initiatives for White-Collar Workers. Policymakers and employers
should launch specific initiatives targeting white-collar occu-
pations in sectors such as information technology, manufactur-
ing, and healthcare. These initiatives can equip workers with
the skills needed for high-value, creative, and complex tasks.
For example, a manufacturing worker can undergo training in
robotics programming, enabling them to effectively operate
and maintain AI-driven machinery. Similarly, healthcare
professionals can acquire telemedicine and data analytics
skills to enhance patient care and diagnostics.

Initiatives for Blue-Collar Workers. Blue-collar occupations, pre-
dominantly found in agriculture, accommodation and food
services, and construction, typically involve low-skilled work
demanding physical labor. While previous literature has
suggested reallocating low-skilled workers to tasks less sus-
ceptible to computerization (14), such as those requiring
creative and social intelligence, we argue that (re)skilling
and upskilling (10) should be approached cautiously. That
is because regions that excessively rely on knowledge-based
economies are likely to face significant AI impact. In fact, by
calculating the AII measure at the regional level, it became
evident that certain states, and even at a more detailed
county-level granularity (Figure 6), may experience lower
levels of impact compared to others. The East Coast, on
average, may experience a greater impact of AI compared
to the West Coast. However, Washington and California

are exceptions to this pattern, as they could be potentially
impacted due to the presence of Seattle and the Bay Area.

Initiatives for Continuous Learning and Interdisciplinary Training.
Promoting a culture of continuous learning and skill devel-
opment is essential. Employers can encourage individuals to
embrace lifelong learning through online courses, certifica-
tions, and vocational training, enabling them to adapt to the
changing occupational landscape (39). Similarly, encouraging
interdisciplinary training can prepare the workforce for
the demands of AI-augmented occupations. For example,
blending traditional engineering with AI and machine learning
training can create a workforce capable of developing and
maintaining AI-enhanced systems across sectors.

Limitations and Future Work. This work has five primary
limitations. First, our analysis is conducted on an annual
basis and assumes that the tasks associated with a given
occupation in the O*NET database remain consistent across
all versions within the same year.

Second, our method relies on patent abstracts to provide
a finer-grained understanding of occupational tasks, mainly
from the US-focused USPTO dataset. Despite the most
significant innovations are typically patented in all major
patent jurisdictions (21), the U.S. holds a distinct position.
In 2014, nearly a quarter of the approximately 10.9 million
patents worldwide were granted in the U.S., highlighting its
significant share (40). However, more recently, Carbonero et
al. (41) and Guarascio et al. (42) studied the potential impact
of AI on occupations in Southeast Asia and Europe. Unlike
our method, their methods relied on manual annotations
to determine the suitability of specific tasks for machine
learning. We therefore calculated the AII score based on
US patents alone and compared it with the AII score from
patents combined from the US, China, Japan, and South
Korea, finding them to be highly correlated (r = 0.93), leaving
our results unaffected. However, future research should still
replicate our method and explore potential cultural differences
in how patents are written and used in other contexts, not
least in the European Union.

Third, it is important to acknowledge that the existing
portfolio of USPTO patents may not comprehensively cover
all the innovations that may impact a particular occupation.
To address this limitation, one potential approach could in-
volve supplementing patent data with other sources, including
research papers and code repositories (43).

Fourth, our assumption is that the likelihood of an AI
system being built is determined by whether it is patented.
While generally true, there are exceptions. A patented
system may not be built, as the patent could be intended
for defensive or offensive purposes (44, 45). Conversely, a
non-patented system might still be constructed, with its
design protected by secrecy or trademarks (46, 47). While
there are numerous patents for systems designed to improve
meetings, calendaring, and instant messaging, patents focused
on interpersonal interactions may be less common. However,
even if these patents do not directly threaten jobs requiring
human interaction, they could still have secondary effects.
For example, if AI significantly affects occupations like artists
or software developers, managerial positions may become
less essential due to a reduced workforce needing oversight.
Yet, our method does not capture such cascading impacts
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Fig. 7. Framework automating AI Impact (AII) measure. Using the Sentence-T5
(ST5) model, we first generated two vector representations (embeddings): one
capturing the semantic meaning of an AI patent, and the other the semantic meaning
of a task description. We then computed the patent-task cosine similarity from the
embeddings on all patent-task pairs. This process was conducted to identify which
tasks were impacted by which AI patents. Finally, for each occupation, we calculated
the proportion of impacted tasks out of the total ones, and this proportion determined
the AII of that occupation.

on the job market. Furthermore, patenting rates vary
among sectors (48), and there is a lag between an innovation
being patented and its use and impacts diffusing across the
economy (43).

Finally, our analysis is based solely on a concise yet compre-
hensive seven-year time window, spanning from 2015 to 2022.
We also repeated the analysis for 2010-2022 and found no
significant difference in the results (as shown in Table S8 and
Figure S5). This does not capture emerging technologies, such
as Large Language Models (LLMs). Future research could
replicate our methodology to assess the potential impact of
emerging technologies, such as cryptocurrency, the metaverse,
and LLMs by using upcoming patents in those fields.

Materials and Methods

Datasets.

Occupation Dataset. We collected detailed task descriptions for
a wide range of occupations from the O*NET database (49),
a widely used source in occupational studies (3, 4, 50–52).
In total, we collected 759 unique occupations and 17,879
unique tasks from O*NET 26.3 version released in May 2022.
The distribution of these tasks ranges from 4 to 286, with a
median of 20 tasks per occupation (Figure S1).

Patent Dataset. To obtain a corpus of AI patents, we first
retrieved 74,875 patents granted by the United States Patent
and Trademark Office (USPTO) between 2015-2022 that were
classified to be about AI based on an official way of coding
patents called PATENTSCOPE AI Index (53) to then filter
away patents only tangentially related to AI. We selected
the subset of patents in the index class core AI applications
(Table S1). This resulted in a final corpus of 24,758 AI
patents.

Measuring AI Impact (AII) on Occupation Tasks.

Sentence-Transformers. We developed a Sentence-Transformers
Deep Learning framework (54) for Natural Language Pro-
cessing that uses the Sentence-T5 (ST5) architecture (29)
to convert input text into “semantic vector representations”
called “embeddings”. These embeddings capture the semantic
information of the text and allow us to mathematically
compute the similarity of a pair of text snippets. In particular,
we chose the Sentence-T5-XL model, which is highly recom-
mended for its effectiveness in handling various language
tasks such as classification and similarity comparisons (54).
This model has demonstrated exceptional performance in a
comprehensive benchmark test—the Massive Text Embed-
ding Benchmark—that evaluated different models across 58
datasets and 112 languages for embedding tasks such as
classification, clustering, and semantic textual similarity (55).
We used the default parameters of the model because they
were already optimized for textual similarity tasks similar
to ours. The model’s default training parameters include
an Adafactor optimizer at a learning rate starting at 0.0001,
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with linear decay after 10% of the total training steps; the
fine-tuning was conducted using a batch size of 2048, and
a softmax temperature τ of 0.01 was used. The model was
trained on a dataset of 2 billion question and answer (Q&A)
pairs from online Q&A communities, and was then fine-tuned
to enhance its understanding of how sentences are related
to each other by training on pairs of sentences that had
been manually reviewed for their meaning (56). The model
uses a siamese network architecture (57), which processes
pairs of sentences to generate a consistent output length,
regardless of the sentence length. This method of producing
fixed-size feature vector representations has proven effective
in capturing the deeper meanings of text without the need
for any preprocessing (58, 59).

AI Impact (AII). We defined AII as a measure of “the exposure
to AI by measuring the extent to which an occupation’s tasks
are associated with patents”. For each task, we identified
the patent with the highest task-patent similarity score
(Equation 1) to represent the AI potential impact αt on task
t indicating the extent to which task t aligns with AI-related
innovations:

αt = max
p

sim(vt, vp) [1]

where sim(vt, vp) is the cosine similarity between the em-
beddings of task t and the embeddings of patent p. We
computed the impact of AI on task t by taking the maximum
similarity value. We took the maximum instead of, say, the
average because if the average was used, similarity scores
from patents that are not particularly relevant to the task
would be factored into the calculation, thereby diluting the
AI impact score (Figure S3). Multi-instance learning was also
considered as an alternative, but it did not produce any more
accurate task-patent matching (explained in “Task-Patent
Matching” in the Supplementary Material).

Measures of AII on Occupations, Industry Sectors, and
Regions.

AI Impact on Occupations.. We computed the AI impact xj on
occupation j by computing the number of AI-impacted tasks
over the total number of j’s tasks:

xj =

∑
t∈tasks(j) 1αt>p90(α)∑

t∈tasks(j) 1
[2]

where p90(α) is the 90th percentile of AI impact values
computed on all occupations’ tasks, and 1αt>p90(α) is an
indicator function whose value is 1, if αt > p90(α), and
0 otherwise. In other words, the AII measure is based
on counting an occupation’s tasks impacted by AI without
accounting for the relative importance of each task, in a way
similar to previous work (26). Using the 90th percentile as
the threshold makes the AI impact measure more robust to
noise, which was also suggested in a previous study (24).
Given that every task is assigned a similarity value in the
previous step, the patent deemed most similar for a specific
task might still be unrelated to that task. On the other
hand, a higher 95th percentile threshold would be too strict,
as 55% of the occupations would have zero impacted tasks.
To further validate our task-patent matching method, two
authors independently assessed the relevance of a patent to
a task in a random sample of 100 task-patent pairs. Overall,

their agreement was nearly perfect, with a Cohen’s Kappa of
0.84.

AI Impact on Industry Sectors. To determine the potential impact
of AI on industry sector s, we calculated the mean AII score
across all occupations j associated with sector s (Equation 3).
Occupation j was assigned to sector s, if over 50% of workers
in j were employed in s:

πs = 1
Ns

∑
j∈occupations(s)

xj [3]

where Ns is the number of occupations associated with s. If
more than half of the workers in an occupation are employed
in a particular sector, it can be reasonably concluded that this
occupation is primarily associated with that sector (4). Lower
thresholds might lead to occupations being associated with
multiple sectors, making the results less specific. Conversely,
a higher threshold might be too restrictive, potentially
excluding occupations with a significant presence in a sector,
even if not overwhelmingly so.

AI Impact on Regions. To determine regional AII scores, we used
the Quarterly Census of Employment and Wages (QCEW)
dataset published in 2022 by the U.S. Bureau of Labor
Statistics. For each region, we calculated a weighted average
of the AII scores across sectors, weighting each sector by the
number of employees in that sector within the region.

Ωr =

∑
s∈sectors(r) πswrs∑

s∈sectors(r) wrs
[4]

where wrs is the number of employees associated with sector s
within region r. Ωr is r’s regional AII score that accounts for
both the AI potential impact on occupations in that region
and the distribution of the workforce across sectors. Sectors
that employ more people in a region have a larger influence
on that region’s overall labor market dynamics. Weighting by
the number of employees ensures that sectors with a higher
workforce representation influence the regional AII score
proportionately. Moreover, some sectors might have extreme
AII scores (either very high or very low). A simple average
could be skewed by these outliers. By weighting sectors based
on the number of employees, the measure ensures that the
regional AII score is not disproportionately affected by these
smaller sectors. This method of weighted averaging aligns
with methodologies in previous studies (2–4).

Thematic Analysis on Occupations and Industry Sectors.

Occupations. To identify emergent themes that characterize
least or most impacted occupations, we conducted a thematic
analysis (60, 61) on the task-patent pairs for all tasks
associated with those occupations. This process consists
of two steps: open coding, in which textual data is broken
up into discrete parts and then coded; and axial coding,
in which the researcher draws connections between the
generated codes (62). We first applied open coding to
identify key concepts that emerged across multiple task-
patent pairs; specifically two of the authors read all task-
patent pairs, and marked them with keywords that reflected
the key concepts expressed in the text. They then used axial
coding to identify relationships between the most frequent
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keywords to summarize them in semantically cohesive themes
(e.g., healthcare, information technology, and manufacturing).
Themes were reviewed in a recursive manner rather than
linear, by re-evaluating and adjusting them as new task-
patent pairs were parsed.

Industry Sectors. Just as with occupations, we conducted
thematic analysis (60–62) to uncover potential explanations
for the most- and least-impacted sectors. We again applied
open coding to identify key concepts that emerged on the
descriptions of occupations (examples presented in Table S3)
across the industry sectors under study, with the same two
authors reading all descriptions and marking them with
keywords that reflected the key concepts expressed in the text.
We then again used axial coding to identify relationships and
potential explanations.

Beyond Automation: Measuring Augmentation. Automation
refers to “technologies that substitute for the labor inputs of
occupations, potentially replacing workers performing these
tasks” (26). That is what our AII captures, and it does so by
first identifying the patent most similar to an occupation task
(Equation 1), and then computing the number of AI-impacted
tasks over the total number of tasks at a given occupation
(Equation 2). In addition to automation, previous research
introduced a complementary type of AI’s potential impact:
augmentation. This refers to “technologies that increase
the capabilities, quality, variety, or utility of the outputs of
occupations, potentially generating new demands for worker
expertise and specialization” (26). To measure augmentation,
instead of measuring the similarity between patents and
occupation tasks, we measured the similarity between patents
and micro-titles defined in the Census Alphabetical Index of
Occupations and Industries (CAI) (26), and then computed
the number of AI-impacted micro-titles over the total number
of micro-titles at a given occupation. Unlike occupation tasks,
micro-titles capture the “emergence of new work categories
that typically reflect the development of novel expertise within
existing work activities (e.g., electrical trades skills specific to
solar installations) or an increase in the market scale of a niche
activity (e.g., nail care) (26).” For example, USPTO patent
US20180275314A1 for “method and system for solar power
forecasting” was linked to the micro-title of “solar thermal
installer” and the task of “performing computer simulation
of solar photovoltaic (PV) generation system performance or
energy production to optimize efficiency”. Similarly, patent
US2022083792A1 for a “method and device for providing
data for creating a digital map” was linked to the micro-title
“digital cartographer” and the task of “mapping forest tract
data using digital mapping systems”. In addition to measuring
automation (using our AII measure on occupation tasks) and
augmentation (adapting our AII measure on micro-titles), we
replicated the method proposed by Gmyrek et al. (37). This
method uses the mean and standard deviation of task-level
scores to distinguish between automation and augmentation
(explained in “Beyond Automation: Measuring Augmentation”
in Supplementary Material).

Data Availability

The occupation data supporting this study’s
findings are available from O*NET (49), at
https://www.onetcenter.org/db releases.html. The patent

data are available in Google Patents Public Data (63)
at https://console.cloud.google.com/marketplace/product/
google patents public datasets/google-patents-public-data,
and can be retrieved using the query available in the
GitHub repository, https://anonymous.4open.science/r/
occupational-ai-impact-6161. The Quarterly Census
of Employment and Wages (QCEW) data are made
available by the U.S. Bureau of Labor Statistics at https:
//www.bls.gov/cew/downloadable-data-files.htm. Source data
are provided with this paper in the GitHub repository, https:
//anonymous.4open.science/r/occupational-ai-impact-6161.

Code Availability

Code necessary to reproduce the analyses in this study is
available in the GitHub repository https://anonymous.4open.
science/r/occupational-ai-impact-6161.
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Language Processing, eds. L Màrquez, C Callison-Burch, J Su. (Association for
Computational Linguistics, Lisbon, Portugal), pp. 632–642 (2015).

57. F Schroff, D Kalenichenko, J Philbin, Facenet: A unified embedding for face recognition and
clustering in Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 815–823 (2015).

58. Q Le, T Mikolov, Distributed representations of sentences and documents in International
conference on machine learning. (PMLR), pp. 1188–1196 (2014).

59. E Alzahrani, L Jololian, How different text-preprocessing techniques using the bert model
affect the gender profiling of authors. arXiv preprint arXiv:2109.13890 (2021).

60. J Saldaña, The Coding Manual for Qualitative Researchers. (Sage), (2015).
61. M Miles, M Huberman, Qualitative Data Analysis: A Methods Sourcebook. (Sage), (1994).
62. V Braun, V Clarke, Using thematic analysis in psychology. Qual. research psychology 3,

77–101 (2006).
63. ICP Services, Google patents public data (2023).
64. S Ruggles, et al., Ipums usa: Version 15.0 (2024).
65. S Firpo, NM Fortin, T Lemieux, Occupational tasks and changes in the wage structure. IZA

discussion paper (2011).
66. SJ Davis, J Haltiwanger, S Schuh, Job creation and job destruction (1996).
67. G Michaels, A Natraj, J Van Reenen, Has ict polarized skill demand? evidence from eleven

countries over twenty-five years. Rev. Econ. Stat. 96, 60–77 (2014).

12 — Septiandri et al.



A SUPPLEMENTARY MATERIAL
A. Supplementary Material

Data

Data Collection. In a total of 24,758 AI patents granted
between 2015 and 2022, the majority contained the keyword
machine learning (46%), followed by the keyword neural
network (32%), artificial intelligence (9%), and deep learning
(6%) (Table S1).

Table S1. Number of patents based on keywords.

Keywords Number of patents
machine learning 10904
neural network 9364
artificial intelligence 2674
deep learning 1848
planning 1050
natural language processing 917
reinforcement learning 506
computer vision 463
speech processing 126
predictive analytics 69
robotics 64
control methods 29
knowledge representation 24

From 759 occupations defined in O*NET, the number of
tasks for each occupation ranges from 4 to 286, with a median
of 20 tasks (Figure S1).
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Fig. S1. The distribution of the number of tasks per occupation.
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To compute SML scores, Brynjolfsson et al. (3) used a set

of rubrics to guide crowdworkers to assess the suitability of
tasks for machine learning (Table S2). Note that only one
item in the rubrics is about interpersonal interactions.

Table S2. Rubrics to compute SML scores as developed by
Brynjolfsson et al. (3).

No Rubric
Q1 Information needed to complete the task (inputs) and outputs can be explicitly specified in machine-readable format
Q2 Task information is recorded or recordable by computer
Q3 Task does not require a wide range of complex outputs (mental and/or physical)
Q4 Task feedback (on the success of outputs) is immediate
Q5 The task output is error tolerant
Q6 It is not important that outputs are perceived to come from a human
Q7 Task does not require complex, abstract reasoning
Q8 Task is principally concerned with matching information to concepts, labels, predictions, or actions
Q9 Task does not require detailed, wide-ranging conversational interaction with a customer or other person
Q10 Task is highly routine and repeated frequently
Q11 Task is describable with rules
Q12 There is no need to explain decisions during task execution
Q13 Task can be converted to answering multiple choice questions, ranking alternative options, predicting a number, or grouping similar objects
Q14 Long term planning is not required to successfully complete the task
Q15 The task requires working with text data or might require working with text in the future
Q16 The task requires working with image/video data or might require working with image/video data in the future
Q17 The task requires working with speech data or might require working with speech data in the future
Q18 The task requires working with other types of data (other than text, image/video, and speech)
Q19 Many components of the task can be completed in a second or less
Q20 Each instance, completion, or execution of the task is similar to the other instances in how it is done and these actions can be measured
Q21 Actions in the task must be completed in a very specific order, and practicing the task to get better is easy
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A SUPPLEMENTARY MATERIAL
Table S3. Examples of occupational descriptions in O*NET.

Occupation Title Sector Description
Cardiovascular Technologists and
Technicians

Healthcare Conduct tests on pulmonary or cardiovascular systems of patients for diagnostic purposes. May
conduct or assist in electrocardiograms, cardiac catheterizations, pulmonary functions, lung capacity,
and similar tests. Includes vascular technologists.

Orthodontists Healthcare Examine, diagnose, and treat dental malocclusions and oral cavity anomalies. Design and fabricate
appliances to realign teeth and jaws to produce and maintain normal function and to improve
appearance.

Medical Records and Health Informa-
tion Technicians

Healthcare Compile, process, and maintain medical records of hospital and clinic patients in a manner consistent
with medical, administrative, ethical, legal, and regulatory requirements of the health care system.
Process, maintain, compile, and report patient information for health requirements and standards in a
manner consistent with the healthcare industry’s numerical coding system.

Numerical Tool and Process Control
Programmers

Manufacturing Develop programs to control machining or processing of metal or plastic parts by automatic machine
tools, equipment, or systems.

Multi-Media Artists and Animators Information Create special effects, animation, or other visual images using film, video, computers, or other
electronic tools and media for use in products or creations, such as computer games, movies, music
videos, and commercials.

Magnetic Resonance Imaging Tech-
nologists

Healthcare Operate Magnetic Resonance Imaging (MRI) scanners. Monitor patient safety and comfort, and view
images of area being scanned to ensure quality of pictures. May administer gadolinium contrast
dosage intravenously. May interview patient, explain MRI procedures, and position patient on
examining table. May enter into the computer data such as patient history, anatomical area to be
scanned, orientation specified, and position of entry.

Nuclear Medicine Technologists Healthcare Prepare, administer, and measure radioactive isotopes in therapeutic, diagnostic, and tracer studies
using a variety of radioisotope equipment. Prepare stock solutions of radioactive materials and
calculate doses to be administered by radiologists. Subject patients to radiation. Execute blood
volume, red cell survival, and fat absorption studies following standard laboratory techniques.

Software Developers, Applications Information Develop, create, and modify general computer applications software or specialized utility programs.
Analyze user needs and develop software solutions. Design software or customize software for client
use with the aim of optimizing operational efficiency. May analyze and design databases within an
application area, working individually or coordinating database development as part of a team. May
supervise computer programmers.

Electro-Mechanical Technicians Manufacturing Operate, test, maintain, or calibrate unmanned, automated, servo-mechanical, or electromechanical
equipment. May operate unmanned submarines, aircraft, or other equipment at worksites, such as
oil rigs, deep ocean exploration, or hazardous waste removal. May assist engineers in testing and
designing robotics equipment.

Industrial Truck and Tractor Opera-
tors

Manufacturing Operate industrial trucks or tractors equipped to move materials around a warehouse, storage yard,
factory, construction site, or similar location.

To conduct the thematic analysis on industry sectors, we
used the occupation titles and descriptions in O*NET. For
brevity, we provide 10 examples in Table S3 and we refer the
reader to the full list in O*NET (49).
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Fig. S2. Frequency distribution plots of the AII measure at the regional level.

Summary Statistics. We checked our AII measure at state-
level distribution to ensure that it was normally distributed
before using it in our regional-level analysis.
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Task-Patent Matching
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Fig. S3. Distributions of the task-patent similarity based on different aggrega-
tions. By focusing only on the most relevant patents, we captured the specificity of
the AI impact measurement for each task, reducing noise, and incorporating a wider
range of AI-related advancements.

Task-patent matching using multi-instance learning. As an
alternative to our AII measure for task-patent matching, we
implemented a multi-instance learning approach. To do so,
we followed a seven-step procedure:
Step 1. Selection of Data:We selected 100 patent
abstracts, each related to just one specific task, and ensured
that every abstract was closely linked to the task it described.
Step 2. Sentence Segmentation: We chunked these
abstracts into individual sentences, resulting in a total of 356
sentences.
Step 3. Embedding Generation for Sentences: We then
generated embeddings for each of the individual sentences.
Step 4. Embedding Generation for Tasks: Simultane-
ously, we generated embeddings for the tasks associated with
patent abstracts selected in Step 1. This parallel embedding
process ensured that both the tasks and the patent sentences
were represented in a comparable semantic space.
Step 5. Pairwise Similarity Calculation: With these
embeddings at hand, we then computed the pairwise similarity
between each task and all sentences from the abstracts related
to it. This step involved calculating the cosine similarity
between embeddings, which quantifies how semantically close
two pieces of text are.
Step 6. Maximum of Similarity Values: For each
task, we selected the maximum similarity value from the
set of pairwise similarities. This value represents the closest
semantic match between the task and sentences in the patent
abstracts.
Step 7. Comparison of Similarities: Finally, we
compared these maximum sentence-level similarity values
with the similarity values obtained from whole abstract
embeddings. This comparison allowed us to determine
whether analyzing sentences individually provides a better
match to the tasks than analyzing whole abstracts.

Following this seven-step procedure, we found a high
correlation between similarity scores computed using em-
beddings of the entire abstract and those using embeddings
of individual abstract sentences (ρ = 0.85). Moreover, 99 of
the 100 selected tasks showed a higher similarity score with
whole-abstract embeddings compared to the best-matching
sentence. This suggests that using the entire abstract provides
more context and leads to better matches than using the
multi-instance learning approach.
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Table S4. Example task-patent pairs matched with AII. The dash (-) sign means that the patent is the same as the cell above it.

Occupation Sector Task Matching Patent Title Matching Patent Abstract Similarity
Substance Abuse and Behavioral
Disorder Counselors

Healthcare Develop client treatment plans based
on research, clinical experience, and
client histories.

Methods and systems for radiother-
apy treatment planning

Example methods for radiotherapy treatment planning are pro-
vided. One example method may include obtaining training data
that includes multiple treatment plans associated with respective
multiple past patients; [...]

0.8018

Mental Health Counselors Healthcare Develop and implement treatment
plans based on clinical experience
and knowledge.

- - 0.8082

Radiation Therapists Healthcare Administer prescribed doses of radia-
tion to specific body parts, using radi-
ation therapy equipment according to
established practices and standards.

- - 0.8330

Architectural and Civil Drafters Manufacturing Reproduce drawings on copy ma-
chines or trace copies of plans and
drawings, using transparent paper
or cloth, ink, pencil, and standard
drafting instruments.

Line drawing generation Computing systems and computer-implemented methods can
be used for automatically generating a digital line drawing of the
contents of a photograph. [...] The training data set teaches the
neural network to trace the edges and features of objects in the
photographs, as well as which edges or features can be ignored.
[...]

0.8038

Multi-Media Artists and Animators Information Create pen-and-paper images to be
scanned, edited, colored, textured,
or animated by computer.

- - 0.8396

Detectives and Criminal Investigators Public administra-
tion

Create sketches and diagrams by
hand or with computer software to
depict crime scenes.

- - 0.8195

Photographic Process Workers and
Processing Machine Operators

Other services Operate scanners or related com-
puter equipment to digitize negatives,
photographic prints, or other images.

- - 0.8167

Software Developers, Applications Information Consult with customers about soft-
ware system design and mainte-
nance.

System and method for custom-fitting
services to consumer requirements

Systems and methods for custom-fitting a service solution to
consumer requirements are provided. [...]

0.8020

Child, Family, and School Social
Workers

Education Interview clients individually, in fami-
lies, or in groups, assessing their sit-
uations, capabilities, and problems to
determine what services are required
to meet their needs.

- - 0.8010

Solar Photovoltaic Installers Construction Determine photovoltaic (PV) system
designs or configurations based on
factors such as customer needs, ex-
pectations, and site conditions.

- - 0.8031

Matching abstracts (not only titles). Patents tend to be
general, and specific tasks may not be mentioned simply in
the patent title. To address this, our method uses the patent
abstract that is richer in text and more likely to reference a
specific task or even entire sector(s) (Table S4). As a result,
we were able to match the same patent with occupations in
multiple sectors. For example, a patent that provides methods
for radiotherapy treatment planning not only matches the
task of radiation therapists, but also counselors (abuse and
behavioral disorder) who need treatment plans. Another
example is a patent for custom-fitting a service solution to
consumer requirements that is applicable to occupations from
different sectors (e.g., software developers, social workers,
and solar photovoltaic installers).
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Table S5. List of the the tasks for the “elevator installers and repairers” occupation, and whether each task is impacted or not based on AII. A
task is impacted when there is a patent with a similarity exceeding the 90th percentile threshold.

Task Is impacted?
Locate malfunctions in brakes, motors, switches, and signal and control systems, using test equipment. Yes
Assemble, install, repair, and maintain elevators, escalators, moving sidewalks, and dumbwaiters, using hand
and power tools, and testing devices such as test lamps, ammeters, and voltmeters.

No

Test newly installed equipment to ensure that it meets specifications, such as stopping at floors for set amounts
of time.

No

Check that safety regulations and building codes are met, and complete service reports verifying conformance
to standards.

No

Connect electrical wiring to control panels and electric motors. No
Adjust safety controls, counterweights, door mechanisms, and components such as valves, ratchets, seals,
and brake linings.

No

Read and interpret blueprints to determine the layout of system components, frameworks, and foundations,
and to select installation equipment.

No

Inspect wiring connections, control panel hookups, door installations, and alignments and clearances of cars
and hoistways to ensure that equipment will operate properly.

No

Disassemble defective units, and repair or replace parts such as locks, gears, cables, and electric wiring. No
Maintain log books that detail all repairs and checks performed. No
Participate in additional training to keep skills up to date. No
Attach guide shoes and rollers to minimize the lateral motion of cars as they travel through shafts. No
Connect car frames to counterweights, using steel cables. No
Bolt or weld steel rails to the walls of shafts to guide elevators, working from scaffolding or platforms. No
Assemble elevator cars, installing each car’s platform, walls, and doors. No
Install outer doors and door frames at elevator entrances on each floor of a structure. No
Install electrical wires and controls by attaching conduit along shaft walls from floor to floor and pulling plastic-
covered wires through the conduit.

No

Cut prefabricated sections of framework, rails, and other components to specified dimensions. No
Operate elevators to determine power demands, and test power consumption to detect overload factors. No
Assemble electrically powered stairs, steel frameworks, and tracks, and install associated motors and electrical
wiring.

No

Previous Attempts to Link Tasks to Patents

Word-matching methods linking tasks to patents. A
word-matching method employs a dictionary approach, pars-
ing task descriptions to identify verb-noun pairs associated
with each task (2). This approach captures the task essence
concisely and specifically, such as the pair “install, sensor”,
offering a clear representation of the task. Using the same
method, AI patent titles are also processed to extract verb-
noun pairs describing the tasks targeted by each patent. The
relative frequency of similar pairs in tasks and patent titles
determines the AI exposure score, indicating the level of task
exposure to AI.

Word-matching methods: Potential false positives.
Webb method (2) identified “elevator installers” as one of
the most impacted occupations by AI. However, he also
acknowledged that this classification is an example of false
positives caused by word matching methods being coarse-
grained. By applying our deep-learning method instead, we
learn that nearly all the tasks of the occupation “elevator
installers” are indeed not impacted (Table S5): only 1 out
of 20 tasks was impacted. This speaks to the robustness of
a deep-learning approaches compared to a word-matching
approach.
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Table S6. List of tasks with zero AI Exposure Score, indicating no associated patents (2). In contrast, AII identifies relevant patents for those
tasks.

Task Extracted pairs AI exposure score Most Similar Patent Abstract Similarity
Document and maintain records of precision
agriculture information.

(maintain, record) 0.000 A method and system for predicting soil and/or plant condition in precision agriculture
with a classification of measurement data for providing an assignment of a measurement
parcel to classes of interest. The assignment is used for providing action recommendations,
particularly in real time or close to real time, to a farmer and/or to an agricultural device
based on acquired measurement data, particularly remote sensing data, and wherein a
classification model is trained by a machine learning algorithm, e.g. relying on deep learning
for supervised and/or unsupervised learning, and is potentially continuously refined and
adapted thanks to a feedback procedure.

0.790

Apply precision agriculture information to
specifically reduce the negative environmental
impacts of farming practices.

(apply, information) 0.000 A method and system for predicting soil and/or plant condition in precision agriculture
with a classification of measurement data for providing an assignment of a measurement
parcel to classes of interest. The assignment is used for providing action recommendations,
particularly in real time or close to real time, to a farmer and/or to an agricultural device
based on acquired measurement data, particularly remote sensing data, and wherein a
classification model is trained by a machine learning algorithm, e.g. relying on deep learning
for supervised and/or unsupervised learning, and is potentially continuously refined and
adapted thanks to a feedback procedure.

0.813

Install, calibrate, or maintain sensors, mechan-
ical controls, GPS-based vehicle guidance
systems, or computer settings.

(maintain, sensor) 0.000 A vehicle computing system validates location data received from a Global Navigation
Satellite System receiver with other sensor data. In one embodiment, the system calculates
velocities with the location data and the other sensor data. The system generates a
probabilistic model for velocity with a velocity calculated with location data and variance
associated with the location data. The system determines a confidence score by applying
the probabilistic model to one or more of the velocities calculated with other sensor data.
In another embodiment, the system implements a machine learning model that considers
features extracted from the sensor data. The system generates a feature vector for the
location data and determines a confidence score for the location data by applying the
machine learning model to the feature vector. Based on the confidence score, the system
can validate the location data. The validated location data is useful for navigation and map
updates.

0.817

Word-matching methods: Potential false negatives.
In addition to, at times, matching incorrectly tasks and
patents (false positives), word matching methods may also
fail to return genuine matches (false negatives). For example,
Webb’s paper reported a variety of tasks for which no patent
was found (Table S6). However, by applying AII to those
tasks, we instead found that there are indeed matching
patents. This discrepancy likely arises from word-matching
methods discarding multiple verb-noun pairs, and overlooking
details in patent abstracts.
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Most- and Least-Impacted Occupations and Industry
Sections

Between 2010 and 2020. We computed the AII measure on
occupations and industry sectors in a larger time window
between 2010 and 2020. Similarly, we observed that the
most impacted occupations come primarily from healthcare,
information technology, and manufacturing, whereas the least
impacted ones come from finance and insurance, education,
and construction.

Table S7. 20 most- and least-impacted occupations ranked by the AII
(Artificial Intelligence Impact) measure using AI patents from 2010 to
2020. For the 20 most- and least-impacted occupations, only 1 entry
differs for each. This is because patents in 2015-2020 account for
96% of the total patents in 2010-2020.

Rank Most-impacted Least-impacted
1 Orthodontists Pile-Driver Operators
2 Cardiovascular Technologists and

Technicians
Graders and Sorters, Agricultural
Products

3 Medical Records and Health Informa-
tion Technicians

Floor Sanders and Finishers

4 Multi-Media Artists and Animators Aircraft Cargo Handling Supervisors
5 Electro-Mechanical Technicians Insurance Appraisers, Auto Damage
6 Magnetic Resonance Imaging Tech-

nologists
Insurance Underwriters

7 Nuclear Medicine Technologists Reinforcing Iron and Rebar Workers
8 Software Developers, Applications Farm Labor Contractors
9 Industrial Truck and Tractor Opera-

tors
Water and Liquid Waste Treatment
Plant and System Operators

10 Numerical Tool and Process Control
Programmers

Animal Scientists

11 Sound Engineering Technicians Brokerage Clerks
12 Computer Programmers Insulation Workers, Floor, Ceiling,

and Wall
13 Life, Physical, and Social Science

Technicians, All Other
Locomotive Firers

14 Earth Drillers, Except Oil and Gas Management Analysts
15 Medical Transcriptionists Podiatrists
16 Airline Pilots, Copilots, and Flight

Engineers
Cooks, Short Order

17 Commercial Pilots Shipping, Receiving, and Traffic
Clerks

18 Physical Scientists, All Other Helpers–Painters, Paperhangers,
Plasterers, and Stucco Masons

19 Computer-Controlled Machine Tool
Operators, Metal and Plastic

Team Assemblers

20 Biomedical Engineers Ambulance Drivers and Attendants,
Except Emergency Medical Techni-
cians
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Fig. S4. Overall AI impact on industry sectors from 2010-2020, ranked from highest
to lowest sector-level AII scores. A sector-level AII score represents the mean AII
across all occupations within that sector. The only difference from the 2015-2020
version is the ordering of other services and construction sectors.

Between 2010 and 2022. We computed the AII measure on
occupations and industry sectors in a larger time window

between 2010 and 2022. In this extended timeframe, we again
observed that the most impacted occupations primarily come
from healthcare, information technology, and manufacturing.
Additionally, we noted an increasing impact of AI in scientific
occupations.

Table S8. 20 most- and least-impacted occupations ranked by the AII
(Artificial Intelligence Impact) measure using AI patents from 2010
to 2022.

Rank Most-impacted Least-impacted
1 Cardiovascular Technologists and

Technicians
Pile-Driver Operators

2 Sound Engineering Technicians Graders and Sorters, Agricultural
Products

3 Nuclear Medicine Technologists Floor Sanders and Finishers
4 Magnetic Resonance Imaging Tech-

nologists
Aircraft Cargo Handling Supervisors

5 Air Traffic Controllers Insurance Underwriters
6 Orthodontists Reinforcing Iron and Rebar Workers
7 Electro-Mechanical Technicians Farm Labor Contractors
8 Power Distributors and Dispatchers Rock Splitters, Quarry
9 Industrial Truck and Tractor Opera-

tors
Brokerage Clerks

10 Police, Fire, and Ambulance Dis-
patchers

Locomotive Firers

11 Security Guards Management Analysts
12 Physical Scientists, All Other Podiatrists
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Fig. S5. Overall AI impact on industry sectors from 2010-2022, ranked from highest
to lowest sector-level AII scores. A sector-level AII score represents the mean AII
across all occupations within that sector.
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Fig. S6. Correlation between AII calculated with only US patents and with patents
from US, China, and Japan.

Using patents from the U.S., China, Japan, and Korea. We
collected all 153,854 patents from China, Japan, and South
Korea written in English from Google Patents Public Data
during the period of study. The AI patents from these
countries and the U.S. make up 81% of the total published
AI patents.

We created two sets that contain patents from: (1) U.S.
only; and (2) U.S., China, Japan, and Korea. As seen
in Figure S6, the AII scores computed on the two sets of
patents have a correlation of r = 0.93. With the newly added
patents from China, Japan, and Korea, additional occupations
potentially impacted include “bakers”, “solar photovoltaic
installers”, and “dredge operators”, predominantly affected
by patents originating from China.

Job Vacancy Rates by Sector vs. sector-level AII. AII at
sector level and vacancy rates are positively correlated, with
a Pearson’s correlation coefficient of r = 0.28 (p = 0.29) but
not statistically significant (Figure S7).
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Fig. S7. Job vacancy rates by sector vs. sector-level AII with all industry sectors.
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Impact of Robots and Software

We investigated the relationship between the adapted AII
score for robots and software and changes in wages and
employment between 1980 and 2010. We did so by following
Webb’s methodology (2), and by using census data and
patents related to robots or software.

Data. For robot-related patents, we filtered patents based
on whether the keywords “robot” or “manipulat” appeared
in the patents’ titles and abstracts. Additionally, we
ensured the resulting set of patents did not have Cooperative
Patent Classification (CPC) codes A61 (medical or veterinary
science; hygiene) or B01 (physical or chemical processes or
apparatus in general), following Webb’s methodology (2).
For software-related patents, our filter included any patent
with the keywords “software”, “computer”, or “program”,
while excluding any that mentioned “chip”, “semiconductor”,
“bus”, “circuity”, or “circuitry”.

To compute the adapted AII score for either robots or
software, we applied the same formula (Equation 1) used to
compute the impact of AI at the task level but replaced the
set of patents with those associated either with robots or
software. To compute the impact of robots or software at
the occupation level, we used the same formula (Equation 2)
because it depends on the number of tasks that are impacted
rather than the patents themselves.

For changes in wages and employment, we used individual-
level microdata from the US Census between 1960 and 2000
and from the ACS between 2000 and 2018, both of which
were provided in the Integrated Public Use Microdata Series
(IPUMS) (64). We restricted the analysis to individuals
aged between 18 and 65 who were employed and engaged
in some form of work.∗ We calculated the average wages
and the proportion of hours worked within each industry-
occupation pair (referred to as an industry-occupation cell).
We used a number of additional census control variables
including age, gender, level of education, and offshorability
(i.e., the degree to which an occupation requires either direct
interpersonal interaction or proximity to a specific work
location). The measure of offshorability was developed by (65)
and standardized by (23). For all the subsequent analyses,
we used the IPUMS “occ1990” occupational classification and
“ind1990” industry classification.

To ensure that the relationship between the AII scores for
robots and software and changes in employment and wages is
measured proportionately to the workforce size, we applied a
number of controls following Webb’s methodology (2). First,
we applied the IPUMS survey’s individual weight (PERWT)
adjusted by the proportion of full-time work in each industry
and occupation combination, resulting into a “labor-supply
weight”. This adjustment yields the total number of full-
time-equivalent (FTE) employees in each industry-occupation
pair. Additionally, we introduced a “demographic-adjusted”
labor-supply weight to reflect demographic shifts since 1980.
This involved categorizing demographic groups by gender,
race (black, white, other), level of education (less than high
school, high school graduate, some college, bachelor’s degree),
and age group (in five-year intervals). The adjusted weight

∗We used the field WORKEDYR from the IPUMS data, which indicates whether the person had
worked at all for profit, pay, or as an unpaid family worker during the previous year. For the census
samples, the reference period is the previous calendar year; for the ACS and the PRCS, the
reference period is the preceding 12 months.

for 2010 was then computed by maintaining each group’s
proportionate weight from 1980 (that is, adjusting each data
point by the 1980 to 2010 weight ratio for its demographic
group). For wage calculations, we determined the real weekly
wages (in 2016 dollars) for 1980 and 2010, focusing on full-
time-full-year (FTFY, over 35 hours/week and 40 weeks/year)
employees, applying a 98% winsorization to control for
extreme values in the earnings data annually. We then
aggregated the census data into industry-occupation-year
groups using the “ind1990” and “occ1990” classifications from
IPUMS. In our subsequent regression analyses, the education
variable was adjusted according to the labor-supply-weighted
average years of education for each industry-occupation cell
in 1980, categorized into terciles.

Regression Model. To measure the relationship between the
adapted AII score for robots and software and changes
in employment and wages, we estimated variations of the
following regression:

∆yo,i,t = αi + βxo + γZo + εo,i,t [5]

The unit of observation is an occupation-industry-year cell,
such as welders in auto manufacturing in 1980, with o
denoting occupation, i industry, and t year. The dependent
variable is the difference between 1980 and 2010 of an outcome
variable of interest (i.e., employment and wages). On the
right-hand side (Equation 5), we included industry fixed
effects αi; the exposure of the occupation to robots or software
xo; and the vector of controls Zo contains occupation-level
variables such as terciles of average years of education and
offshorability.

To measure the change in employment, we used the DHS
changes, also known as arc percentage change or percent
change relative to the midpoint. DHS is a symmetric measure
of the growth rate defined as the difference between two values
divided by their average (66). This results in a second-order
approximation of the log change for growth rates near zero;
values are restricted to being between -2 and 2, with -2 and
2 representing exit and entry respectively.

To measure the change in wages, we used the log change
in real weekly wages for full-time and full-year workers in
each industry-occupation cell. For the adapted AII scores,
we transformed the raw scores to be in employment-weighted
percentiles. Thus, a score of 90 means that 10% of workers
work in occupations with a higher exposure. To construct
the industry-occupation cell and account for industry fixed
effects, we used the IPUMS “ind1990” industry classification
code. Finally, the sample used to measure the relationship
between exposure to robots and changes in employment and
wages is restricted to industries within the manufacturing
sector.

Results. The models show that moving from the 25th to the
75th percentile of exposure to robots is associated with a
decline in wages between 2 and 4% (Table S9), depending on
the specification, and a varying effect in industry employment
share of between -9 and 18% (Table S10). Similarly, moving
from the 25th to the 75th percentile of exposure to software
is associated with a decline in wages of between 4 and 7%
(Table S11), and a decline in within-industry employment
shares of between 3 and 10% (Table S12). Recall that these
are within-industry effects. Therefore, these results do not
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Table S9. Change in wages vs. exposure to robots, 1980-2010. Each observation is an occupation-industry cell. Dependent variable is
100x change in log wage between 1980 and 2010, winsorized at the top and bottom 1%. Education variables are terciles of average years of
education for occupation-industry cells in 1980. Wages are cells’ mean weekly wage for full-time, full-year workers in 1980. Offshorability is an
occupation-level measure from Autor and Dorn (2013). Observations are weighted by cell’s labor supply, averaged between 1980 and 2010.

(1) (2) (3) (4) (5) (6)

AII -0.076∗∗∗ -0.076∗∗∗ -0.076∗∗∗ -0.035∗ -0.042∗∗

(0.018) (0.018) (0.018) (0.018) (0.018)
Offshorability -2.029∗∗∗ -0.693 5.077∗∗∗ 5.162∗∗∗

(0.701) (0.713) (0.730) (0.729)
Medium education 5.271∗∗∗ 9.529∗∗∗ 9.756∗∗∗

(0.962) (0.941) (0.937)
High education 8.732∗∗∗ 27.022∗∗∗ 27.503∗∗∗

(0.984) (1.276) (1.261)
Wage -0.056∗∗∗ -0.056∗∗∗

(0.003) (0.003)
Wage squared 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000)

Adjusted R2 0.003 0.036 0.037 0.049 0.126 0.125
Industry FEs ✓ ✓ ✓ ✓ ✓
Observations 5957 5957 5957 5957 5957 5957

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

simply say that manufacturing jobs are exposed to robots, and
manufacturing has (for other reasons) declined. Rather, they
show that within each manufacturing industry, the particular
occupations exposed to robots have declined much more than
those that are not exposed.

However, these relationships might be influenced by exter-
nal factors such as offshorability, industry effects, educational
levels, and wage polarization. Given the emergence of
offshoring as a significant trend between 1980 and 2010,
we incorporated it as a control variable in our analysis.
Additionally, we anticipated that industry-specific effects
would capture variations stemming from trade dynamics and
evolving consumer preferences impacting product demand.
Another consideration was the significant demographic and
skill shifts observed between 1980 and 2010. It is plausible
therefore that the workforce’s educational enhancement,
particularly the increase in highly skilled individuals, altered
the labor supply dynamics, diminishing the availability of low-
skilled workers who are most vulnerable to automation. This
shift could mislead us into attributing the decrease in low-
skilled labor demand to automation, overlooking the actual
supply reduction. Finally, the potential of wage polarization,
not directly linked to automation, is another factor to
control for because previous economic studies have shown a
decline in middle-skill workers’ wages within the timeframe
of our study, contrasting with a rise in top-tier salaries (67).
Despite accounting for these factors, the relationship between
exposure to robots or software and changes in employment
or wages remained statistically significant.
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Table S10. Change in employment vs. exposure to robots, 1980-2010. Each observation is an occupation-industry cell. Dependent variable is
100x DHS change of a cell’s share of overall employment between 1980 and 2010, winsorized at the top and bottom 1%. Education variables
are terciles of average years of education for occupation-industry cells in 1980. Wages are cells’ mean weekly wage for full-time, full-year
workers in 1980. Offshorability is an occupation-level measure from Autor and Dorn (2013). Observations are weighted by cell’s labor supply,
averaged between 1980 and 2010.

(1) (2) (3) (4) (5) (6)

AII 0.360∗∗∗ 0.373∗∗∗ 0.360∗∗∗ -0.124 -0.188∗∗

(0.064) (0.063) (0.063) (0.080) (0.079)
Offshorability 4.639∗ 0.571 15.211∗∗∗ 15.233∗∗∗

(2.514) (2.535) (2.651) (2.652)
Medium Education -29.584∗∗∗ -20.301∗∗∗ -15.843∗∗∗

(3.916) (3.885) (3.408)
High Education -40.941∗∗∗ 6.256 12.004∗∗∗

(4.296) (5.180) (4.588)
Wage -0.113∗∗∗ -0.113∗∗∗

(0.012) (0.012)
Wage squared 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000)

Adjusted R2 0.005 0.067 0.067 0.082 0.119 0.118
Industry FEs ✓ ✓ ✓ ✓ ✓
Observations 5957 5957 5957 5957 5957 5957

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S11. Change in wages vs. exposure to software, 1980-2010. Each observation is an occupation-industry cell. Dependent variable is
100x change in log wage between 1980 and 2010, winsorized at the top and bottom 1%. Education variables are terciles of average years of
education for occupation-industry cells in 1980. Wages are cells’ mean weekly wage for full-time, full-year workers in 1980. Offshorability is an
occupation-level measure from Autor and Dorn (2013). Observations are weighted by cell’s labor supply, averaged between 1980 and 2010.

(1) (2) (3) (4) (5) (6)

AII -0.141∗∗∗ -0.131∗∗∗ -0.135∗∗∗ -0.068∗∗ -0.077∗∗∗

(0.030) (0.030) (0.030) (0.031) (0.029)
Offshorability -3.498∗∗∗ 0.105 14.785∗∗∗ 15.036∗∗∗

(1.106) (1.150) (1.133) (1.129)
Medium education 9.695∗∗∗ 24.125∗∗∗ 24.380∗∗∗

(1.678) (1.617) (1.614)
High education 19.347∗∗∗ 73.521∗∗∗ 74.252∗∗∗

(1.743) (2.051) (2.033)
Wage -0.170∗∗∗ -0.171∗∗∗

(0.005) (0.005)
Wage squared 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000)

Adjusted R2 0.001 0.028 0.028 0.035 0.137 0.136
Industry FEs ✓ ✓ ✓ ✓ ✓
Observations 18724 18724 18724 18724 18724 18724

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S12. Change in employment vs. exposure to software, 1980-2010. Each observation is an occupation-industry cell. Dependent variable is
100x DHS change of a cell’s share of overall employment between 1980 and 2010, winsorized at the top and bottom 1%. Education variables
are terciles of average years of education for occupation-industry cells in 1980. Wages are cells’ mean weekly wage for full-time, full-year
workers in 1980. Offshorability is an occupation-level measure from Autor and Dorn (2013). Observations are weighted by cell’s labor supply,
averaged between 1980 and 2010.

(1) (2) (3) (4) (5) (6)

AII -0.126∗∗∗ -0.063 -0.057 -0.196∗∗∗ -0.195∗∗∗

(0.042) (0.040) (0.040) (0.040) (0.040)
Offshorability 5.616∗∗∗ -2.606∗ 4.628∗∗∗ 5.263∗∗∗

(1.452) (1.500) (1.550) (1.545)
Medium education -29.554∗∗∗ -22.455∗∗∗ -21.809∗∗∗

(2.188) (2.212) (2.209)
High education -43.686∗∗∗ -17.769∗∗∗ -15.918∗∗∗

(2.273) (2.807) (2.783)
Wage -0.093∗∗∗ -0.094∗∗∗

(0.007) (0.007)
Wage squared 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000)

Adjusted R2 0.000 0.114 0.115 0.132 0.146 0.145
Industry FEs ✓ ✓ ✓ ✓ ✓
Observations 18724 18724 18724 18724 18724 18724

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Fig. S8. Automation vs. augmentation potential computed using the mean and
standard deviation of similarity scores as per (37) (bottom-left: not impacted; top-left:
augmented; top-right: the big unknown; bottom-right: automated).
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Fig. S9. Automation vs. augmentation using patent similarity to tasks and micro-titles
defined in the Census Alphabetical Index of Occupations and Industries (CAI) (26).

Beyond Automation: Measuring Augmentation

Figure S8 shows the results as per Gmyrek et al. (37)’s
method. To compare Autor et al.’s (26) and Gmyrek et
al.’s (37) methods, for each occupation group defined by the
first two digits—coarser-grained classification compared to the
six digits classification—of the Standard Occupational Clas-
sification (SOC) code (https://www.bls.gov/soc/socguide.htm),
we computed the average similarity value for automation and
augmentation. We then took the median of the two average
values and created a quadrant (automation vs. augmentation).
The top left quadrant then indicates occupations that are
likely to be exposed to augmentation, while the bottom right
quadrant shows the exposure to automation. Figure S9 shows
the results as per Autor et al (26)’s method, adapted to be
visually similar with that of Figure S8. From these two figures,
we observed that, in line with our results, Gmyrek et al. (37)’s
method identified personal care (e.g., hearing aid specialist),
construction (e.g., electrical and electronics repairers), and
food preparation (e.g., food science technician) occupations
as more exposed to augmentation than automation.
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