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Abstract—Human physiology is a window to our physical, mental, and emotional states; our
well-being. Today, a new wave of objective data derived from consumer-grade body
sensors—like those equipped by smartwatches—paves the way towards a new approach in how
well-being is being measured, continuously and unobtrusively. Here, we developed a framework
for collecting and analyzing physiological data using smartwatches in-the-wild, and
demonstrated its robustness in data obtained away from controlled laboratory settings. We
found that changes in people’s heart rate and heart rate variability are predictive not of
momentary well-being (a scientific idea that continues to live on in the absence of in-the-wild
evidence, aka, zombie theory) but of daily well-being.

Index Terms: O.1 Affect sensing and analysis;
O.2 Modeling human emotion; O.6.1 Methods
of data collection

INTRODUCTION

Subjective Well-being (SWB) is a multi-
faceted construct. In literature, SWB and hap-
piness are often used interchangeably, and refer
to ‘people’s cognitive and affective evaluations
of their life’ [1]. Psychologists describe it as
the aspect of happiness that can be empirically
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measured, or the presence of positive emotions
and absence of negative ones. Measuring one’s
happiness is a challenging task. To grasp its
constituents [2], scholars often resort to mea-
sure it using surveys (e.g., PANAS), usually
administered to restricted groups of people, or
occasionally, to larger populations over longer
periods of time. Nevertheless, their high costs,
and reliance on people’s recollection to provide
truthful reports [1] greatly limits their scale. The
diffusion of mobile and wearable devices enables
a scalable way of sampling people’s experiences
and feelings [3], thus facilitating well-being re-
ports collection at scale, systematically, and ob-
jectively [4].

Often, these self-reports are used to train
algorithms that predict well-being from behav-
ioral traces. One line of work focused on pre-
dicting self-reports from contextual data like a
person’s current activity [4]. A second, more
recent research stream used commercial-grade
body sensors to predict well-being, stress, and
affective states from biological signals [5], or
motion [6]. The first approach can predict macro-
scale well-being (e.g., people tend to be happier
when outdoors), but fails to grasp the variation of
momentary feelings when external conditions are
fixed; this is a severe limitation, as people spend
most of their time indoors performing a restricted
number of activities. The latter approach has
proven effective in predicting momentary feelings
in controlled experimental settings (e.g., heart
rate to identify emotional responses to videos),
but has failed in estimating well-being in-the-
wild, mainly because data collected by wearables
used throughout the day is noisy, and affected
by several confounders. To overcome these lim-
itations, we propose to measure well-being in
real-time and in-the-wild using consumer-grade
smartwatches through systematic monitoring of
people’s physiological changes. In doing so, we
make three contributions:

• We developed ‘WellBeat’, a framework for
collecting physiological data, which consists
of i) a Samsung Galaxy watch application
that occasionally prompts users to report their
momentary feelings, while continuously sam-
pling their heart rate, and ii) a service for
data storing and processing. To analyze the

collected data, we implemented a processing
pipeline for conducting Heart Rate Variability
(HRV) analysis on the raw Photoplethysmog-
raphy (PPG) signal, and demonstrated its ro-
bustness (§FRAMEWORK).

• We conducted a three-week study with 12 sub-
jects using an Experience Sampling Method
(ESM). In total, we collected 1,121 hours of
raw PPG signal, and a total of 1,032 self-
reported labels related to happiness, awaked-
ness, and relaxedness levels (§ESM STUDY).

• We analyzed the extracted HR and HRV pa-
rameters, and the self-reported well-being mea-
sures in two aggregation levels: (a) momentary,
and (b) daily (§ANALYSIS). The distinct pat-
terns in people’s heart rate variations explain
their happiness, awakedness, and relaxedness
levels (§RESULTS) but, they do so to a greater
extent when the aggregation is at daily level;
a finding consistent with theoretical expec-
tations. Higher variations in HR are linked
to higher happiness levels, and higher vari-
ations in HRV are linked with higher levels
of awakedness and relaxedness. Compared to
state-of-the-art HRV processing tools, the sig-
nal produced by the Wellbeat’s data processing
pipeline shows a stronger association with the
user-reported labels.

RELATED WORK AND BACKGROUND

Heart Rate Variability
In the human body, the Autonomic Nervous

System (ANS) is responsible for controlling bod-
ily functions that are not consciously directed [7].
HRV—the physiological phenomenon of variation
in the time interval between heartbeats—is one
of the most promising markers to assess ANS
activity, particularly in psycho-physiological stud-
ies [8]. It is based on the measurement of the
time elapsed between heartbeats, usually referred
to RR intervals.

The most reliable tool for heart rate monitor-
ing is the Electrocardiogram (ECG). It measures
the electrical activity of the heart, and the dis-
tance between spikes on the ECG line is used
to estimate the RR intervals [9]. ECG serves as
the gold standard, but cannot be easily measured
during daily activities.

A practical and non-invasive alternative to
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assess heart’s state is the PPG, which relies on
optics. A LED sensor illuminates the skin be-
neath the sensor and a photodiode absorbs the
amount of backscattered light, which corresponds
to the discoloration of the skin as blood perfuses
through it after each heartbeat. Each cardiac cycle
appears as peak in the PPG signal. Often, PPG is
easily distorted by artifacts introduced by motion,
ambient light, or skin tones differences. However,
the broad diffusion of PPG sensors in consumer-
grade smartwatches, and the availability of signal
processing tools to handle noisy signals [10],
make it the best alternative to conduct HRV
studies at scale [9]. Existing frameworks for HRV
analysis like BioSPPy1, pyHRV2, and HRVAS3

toolbox use the Pan-Tompkins algorithm for HRV
analysis.

Once RR intervals are extracted, they can be
used to extract a number of parameters that model
HRV. These parameters are defined in the time
domain (e.g, RMSSD, SDNN), frequency domain
(e.g., LF, HF), or as non-linear indices (e.g., SD1,
SD2) [8].

FRAMEWORK
Next, we describe our data collection frame-

work and the data processing pipeline for con-
ducting HRV analysis.

Data Collection
To study the relationship between people’s

physiological changes and their well-being, we
developed ‘WellBeat’, a three-tier framework
(Figure 1a) composed by an application layer, a
web services layer, and a data access layer.

Application layer
To access the watch application users register
through a webpage to obtain a 4-digit unique
number that anonymously identifies each device,
and is used to activate the application on first use.

The application was developed using the Ti-
zen platform; the Samsung’s Operating System4.
It has two components: i) a front-end that handles
user-facing menus for self-reports collection, and
ii) a native background service written in C

1https://biosppy.readthedocs.io/en/stable/.
2https://pyhrv.readthedocs.io/en/latest/.
3https://github.com/jramshur/HRVAS.
4https://www.tizen.org/.

(a)

(b)

Figure 1: (a) ‘WellBeat’ framework overview
diagram, and (b) the three questions were asked
in a Likert-scale 1-5, with (1) indicating not at
all, and (5) indicating extremely.

that continuously records the PPG signal, and
communicates with the web services.

The User Interface consists of three screens
(Figure 1b). Users are nudged into submitting a
self-report via notifications triggered by the Tizen
Push Server thrice a day, at random times (Fig-
ure 1a). Random scheduling notification policies
capture well the spontaneous nature of happiness
and feelings [4], while being less prone to the
risk of cognitive biases than regular scheduling
policies [11]. In line with previous work on
experience sampling [4], a notification consists
of three optional questions prompted on separate
screens (Figure 1b). The timestamp of responses
is recorded.

The PPG signal is sampled every 100ms
(10Hz); we refer to this signal as ‘ppg signal’.
Instantaneous heart rate, post-processed by Tizen
is also sampled; we refer to this signal as ‘hrm
signal’. Sampling at 10Hz allowed us continu-
ous recordings throughout the day, and ensuring
battery life up to 14 hours Both signals and self-
reports are temporarily stored on the watch, and
they are periodically transmitted to the server
whenever Internet is available, ensuring negligible
effects on battery life due to data transmission.
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Figure 2: Schematic data flow in our six-step data processing pipeline for conducting HRV analysis.
(a) Step 1: detect and filter out off-wrist signal; (b) Step 2: signal slicing; (c) Step 3: pass aggregated
signal slices through a bandpass filter to filter out heart frequencies (i.e., 0.8-3.67Hz); (d) Step 4: RR
detection using a peak detection algorithm; (e) Step 5: compute HR and HRV estimates using the
extracted RR; (f) Step 6: apply the missingness score to the extracted HR and HRV estimates for
additional motion artifacts correction.

Web services layer
Using the Tornado framework, we developed a
RESTful API that handles layers’ communication
through three endpoints (Figure 1a). The first
endpoint stores data from the registration portal,
and generates unique user identifiers. The second
stores sensor data and self-reports received from
the watch. The third implements an observer
pattern that allows the watch to register in the
Notifications Server. In turn, it submits POST
requests to the Tizen’s Push Server, which notifies
the watch.

Data access layer
The raw data is stored in a MongoDB instance,
in two database collections; the Sensor and the
Self-reports collections.

• Sensor: [userID, sensor type, sensor value,
ts], where userID is the 4-digit user identifier,
sensor type hrm or ppg, sensor value is the
sensor reading, and ts is the time that the
sensor reading was sampled.

• Self-reports: [userID, type, value, ts], where
userID is the 4-digit user identifier, type
is the category of the self-reports (i.e.,
Happy/Awake/Relaxed), value is the Likert-
scale value of the self-report, and ts is the time
that the label was reported.

Data processing pipeline and HRV analysis
We built a six-step data processing pipeline,

which we describe next

Pre-processing
Step 1: Detect ‘off-wrist’ signal: The watch ap-
plication measures PPG continuously, even when
users were not wearing the watch. To filter out
noise introduced by ‘off the wrist’ signal, we
matched the timestamps of the ‘ppg’ and ‘hrm’
signals. When the watch is off the wrist, the
instantaneous heart rate provided by the Tizen
(hrm signal) is marked as 0 or -3. Therefore,
we cleaned the ppg signal using these thresholds
(Figure 2a).

HRV analysis
Step 2: Signal slicing: HRV parameters are de-
fined on temporal intervals of the PPG signal.
Experts suggest an absolute minimum of 5 min-
utes to conduct HRV analysis [7]. Therefore,
we partitioned the PPG signal in consecutive 5-
minute slices, and we refer to the ith slice of
participant u as sliceui (Figure 2b).

Step 3: Isolate heart frequencies: According to
the Nyquist-Shannon theorem, when sampling a
continuous signal the sampling rate should be at
least twice that of the highest frequency to be
captured. The heart of most humans beats in a
range between 40-220 bpm, which translates to a
minimum of 0.67Hz and a maximum of 3.67Hz.
Therefore, we filtered out slices whose sampling
rate is less than the 7.34Hz (2 × 3.67Hz) needed
to capture the maximum heart frequency. Despite
configuring the watch application recordings at
even higher sampling rate (i.e., 10Hz), the sam-
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pling rate might fall below this threshold. This
could be due to CPU balancing or instantaneous
sensor glitch. Then, using Python’s SciPy signal
package, we applied a band-pass filter to a slice
to suppress all the frequencies outside the range
of the human heart beat (Figure 2c).

Step 4: Detect RR: We first upsampled the PPG
signal to 250Hz using the Fourier method [10],
which is considered an acceptable frequency
range to perform HRV analysis [12]. We then
developed an adaptive threshold peak detection
algorithm to detect the RR intervals. The algo-
rithm computes a moving average over a temporal
window of 1.5 seconds centered on each data
point, discovers regions of interest between pairs
of points in which the signal amplitude is larger
than the moving average, and finally identifies
peaks within each region (Figure 2d). The moving
average is incremented stepwise, and the analysis
is iterated until an optimal peak detection fit has
been determined [10].

Step 5: HRV parameters: From RR intervals, we
computed the HRV parameters and the µHR for
each signal sliceui . The output is a vector that
corresponds to the HRV parameters (§RELATED
WORK AND BACKGROUND) and the instan-
taneous heart rate (HR) (Figure 2e).

Post-processing
Step 6: Missingness score: To ensure reliable
HRV parameters we computed a ‘missingness
score’ [13]; a metric for adjusting error tolerance
in HRV analysis by removing motion artifacts.
It is calculated using Formula (1), and provides a
confidence level of the number of RRs that should
have been recorded to ensure reliable estimates;
the higher the value, the less reliable the estimates
are. As prior work suggests [13], we filtered out
any HR and HRV parameters whose missingness
score is > 35% (see Figure 2f).

missingness score = 1−observedRRs+ 1

µHR ×minutes
,

(1)
where observedRRs is the number of RR intervals
observed in the slice.

ESM STUDY
We conducted a three-week ESM study to

demonstrate our framework’s effectiveness. We

recruited 12 individuals (3 Female) with no medi-
cal conditions. They all agreed to share their heart
rate data, and were consented in writing for their
participation. We anonymized any user identifica-
tion and made our dataset publicly available5.

In total, we collected 1,032 self-reported mo-
mentary labels across the three label categories,
and sampled 1,121 hours of raw PPG signal.
Forty percent of the initial PPG signal (about
445 hours) was eliminated due to participants
not wearing their watches all the time (Step 1).
About 40 hours were filtered out during HRV
analysis (Steps 2-5). A total of 291 hours was
left after correcting for motion artifacts (Step 6).
This data loss is a general problem often observed
in studies where controls over participation are
absent. However, we ensured data reliability by
following the six-step procedure. For example,
the final step (Figure 2f) of the data processing
pipeline yields HR and HRV parameters which
are aligned with the normative values of healthy
adults [14].

ANALYSIS
With HR and HRV parameters at hand, we

investigated the extent to which heart rate changes
are associated with well-being. We did so by
exploring two aggregation levels: (a) momentary,
and (b) daily. Some previous studies showed that
HR and HRV cannot approximate momentary
self-reported labels [15], while others report con-
trasting results [16], [17], or even question the
use of various HRV indicators through the idea of
zombie theories [18]. In both aggregation levels,
we focused on the HR and the RMSSD parameter
as the HRV measure due to its wide use across
studies [8].

Hypotheses
We formulated three hypotheses:

• H1: Happiness is a multi-faceted construct [1].
It is often linked to activity [5] or explains a
state of relaxation [19]. Due to its complex
structure, we investigated both HR and HRV,
as follows: (a) The higher or the lower the
HR, and (b) the lower the HRV, people are,
on average, happier [19].

5https://social-dynamics.net/wellbeat/dataset
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• H2: Awakedness is characterized by higher
alertness levels and reactivity to cognitive
tasks. Higher HR is often linked to higher
alertness levels [20]. Therefore, we hypothe-
size that the higher the HR, the more awake
people are.

• H3: Relaxedness is often linked with the ab-
sence of stress. Prior works showed that HRV
is a good predictor of physiological arousal
and, in turn, how well the body copes with
stress [16], [17]. Therefore, we formulate a
hypothesis as follows: The higher the HRV,
people are, on average, more relaxed.

Momentary aggregation
Similar to [15], [16], we matched the extracted

HRV parameters at a window of ±10 minutes
from the time a momentary self-reported label
was reported. This translates into 2 slices before
and after the reported label.

Daily aggregation
We computed a metric that captures the daily

variations of people’s HR and HRV parameters
compared to their baseline. We generalized the
procedure such that it applies for each HRV
parameter f described in (§RELATED WORK
AND BACKGROUND).

First, we computed the user’s baseline for
each feature f as µB , where B is the set of
a user’s values for feature f across all days.
Then, we performed an hourly aggregation by
computing the f@hour = µhour − µB , which
is the difference of the hourly value of feature f
compared to the user’s baseline for that feature.
Finally, we aggregated the hourly changes into
the daily metric using Formula (2).

∆f@day =
1

n

n∑
i=1

f@houri, (2)

where n is the number of total hours per day, and
i is the ith hour of a day.

Next, we matched each user’s daily metric
with each self-report category’s probabilities. To
do so, we computed the probability, P (W )@day,
for each W ∈ {Happy, Awake, Relaxed}, as
P (W ) = |WL|

|L| , where L is the set of all W self-
reports across all days, WL is the set of W self-
reports computed as WL = {l ∈ L | l ≥ M̄L},

(a) Momentary Awake vs. Momentary HR & HRV

(b) Daily Happy vs. ∆HR (c) Daily Happy vs. ∆RMSSD

(d) Daily Awake vs. ∆HR (e) Daily Relax vs. ∆RMSSD

Figure 3: HR and RMSSD momentary (a) and
daily (b-e) variations for Happiness, Awakeness,
and Relaxedness (x-axis: quartiles; y-axis: (a) 5-
point Likert scale, and (b-e) daily probability for
each self-report category).

where l is a self-report, and M̄L the median value
of all W self-reports. The median value repre-
sents each user’s most frequently self-report value
in each label category. Given each user’s own
self-assessment, the choice of median served as
a representative way to discriminate the positive
and negative classes in each label category.

RESULTS
At daily level, people are happier when their

HR varies little from their baseline, or in ex-
treme ranges. High deviations from one’s baseline
(Figure 3b) might be linked to activity, as pre-
vious work established the link between activity
and happiness [5], while small deviations might
explain a state of relaxation. Consistent with
prior emotion research and ANS activity [19], we
observed that lower HRV deviations (Figure 3c)
are linked to higher happiness levels. Awakedness
was higher when HR deviated significantly from
one’s baseline, in line with prior work [20].
Higher relaxation was observed when people’s
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HRV varied in higher ranges than their baseline.
Previous work established the link of HRV as a
proxy to assess one’s physiological arousal [16],
[17]; higher values suggest that the body copes
better with stress.

For momentary aggregations, however, no
specific patterns emerged (Figure 3a). This re-
sult confirms the difficulty in tracking people’s
momentary affective states documented in pre-
vious work [15]. Contrarily, when aggregating
at a coarser-grained granularity, the patterns in
people’s HR and HRV matched their happiness,
awakedness, and relaxedness levels as expected
from our hypotheses.

Additionally, we compared our WellBeat six-
step pipeline (a) with a different pipeline that
replaces steps 4 and 5 with a combination of the
state-of-the-art tools BioSPPy and pyHRV, and
(b) with a BioSPPy and pyHRV configuration
without step 6 (c). We computed the daily metrics
using these three configurations. We then set up a
classification task to predict the three daily labels
from the metrics computed for the three con-
figurations separately. We implemented Logistic
Regression classifiers and cross-validated them
in a 90/10 train-test split setting. We observed,
on average, a relative improvement of 9.06% in
AUC among all three labels for configurations
(a) over (b), corroborating our framework’s ro-
bustness against state-of-the-art. We observed the
highest relative gain of 12.7% when predicting
relaxedness levels (overall AUCs of 0.592 and
0.57 in configurations (a) and (b) respectively),
followed by awakedness with 9.3%, and happi-
ness levels with 5.2%. Such finding is in line with
previous HRV literature [8], but also corroborates
the difficult nature of this task under free-living
conditions [15]. We also observed, an average
improvement of 5.2% of configuration (b) over
(c), which highlights the importance of additional
checks when operating with noisy PPG signals in
free-living conditions.

CONCLUSION
We examined the feasibility of measuring

people’s SWB using physiological data in-the-
wild. In doing so, we developed ‘WellBeat’, a
framework for collecting heart rate data from
consumer-grade smartwatches and conducting
HRV analysis. Unlike controlled laboratory stud-

ies, we deployed our framework in the wild.
We found distinct patterns in people’s heart

rate variations which are linked with their happi-
ness, awakedness, and relaxedness, but only when
aggregating the signal at daily level. This supports
the idea that tracking momentary constituents of
well-being might not be feasible, particularly in-
the-wild [15]. The daily level aggregation instead
revealed distinct patterns which are consistent
with theoretical expectations, either conducted
under controlled settings [6] or utilized post-
processed data from wearable devices such as
Empatica E4 [16].

The results corroborate the validity of our
framework, and pave the way towards a new
approach of systematic monitoring people’s phys-
iological states unobtrusively and continuously.
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