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ABSTRACT
Successful meetings create a safe environment for contribu-
tion; one that attendees feel engaged in and part of. Previous
research has shown that meetings success depends not only
on execution, but also on whether attendees feel psycho-
logically safe. While this aspect is, to a great extent, partly
observable through certain body cues during in-person meet-
ings, they are often overlooked in virtual ones. To partly fix
that, we developed “Kairos”–a system for multi-modal moni-
toring of virtual meetings that captures subtle body cues. We
deployed it in 55 real-world corporate meetings and, upon six
metrics for body cues, we built a model to predict a meeting’s
self-reported success, achieving an AUC as high as 79%. We
found that certain body cues were more predictive of a meet-
ing’s success (defined as a linear combination of execution
and psychological safety) than others (head movements, for
example, were twice as predictive as hand movements), not
least because they captured three typical meeting phases (its
initiation, collective discussions, and turning points) whose
presence (or absence) greatly mattered for success.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing systems and tools.
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Figure 1: KAIROS monitors virtual meetings using a
multi-sensory approach, and predicts their success.

1 INTRODUCTION
In any organization, whether it be a small company or a large
corporation, meetings are the fuel for productivity. They en-
able collective work, facilitate decision-making, and foster
execution [37]. To a great extent, meetings’ engagement is
an observable behavior, often expressed by body cues. As
humans, we are attuned to these cues to ‘make sense’ of an
in-person meeting. However, the picture is slightly different
in a virtual meeting. Not only visual communication cues,
but also non-verbal ones such as body postures and gestures
might go unnoticed [34]. Consider, for example, a virtual
all-hands meeting, where one would expect a one-to-many
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form of communication. One could imagine that not every-
one would feel comfortable sharing their video streams in
such a setting and, as such, the speaker/presenter might miss
the opportunity to ‘read the room’ (i.e., interpret non-verbal
cues expressed by meeting participants). Therefore, captur-
ing body cues would not only bring them back to the virtual
space, but also give meeting participants the opportunity to
‘read the [virtual] room’. As the Related Work section (§2)
summarizes, while previous research successfully employed
techniques for analyzing audio-visual or textual informa-
tion in virtual meetings [26, 41], the full spectrum of human
senses is far from being captured. As the mobile-sensing tech-
nologies are growing in sophistication and ubiquitousness,
we are now faced more than ever with a unique opportunity
to measure human behavior that was previously impossible
to measure [7, 27]. In this vein, we developed “Kairos”, a
system for multi-modal monitoring of virtual meetings, and
made three main contributions:

• We developed a multi-modal system (mobile, watch,
and earables), and deployed it in 55 real-world cor-
porate virtual meetings for three weeks. We collected
1,968minutes ofmulti-modal data, and 135 self-reported
meetings success scores (§3).

• Using the collected data, we developed six body cues
metrics based on the literature, and tested whether
they are predictive of meetings success (§4). Our best
performing model predicts success from these metrics
with an AUC of 79%. We found that, among the six
metrics, the most predictive one is ‘head movements’
(twice as important as hand movements); this metric
was even more predictive than a meeting’s emotional
content derived from the meeting’s transcript.

• Through a thematic analysis, we found that body cues
were indicative of the presence (or absence) of three
types of key phases in a meeting that happened to
greatly impact its success: the meeting’s initiation, col-
lective discussions, and turning points (§4).

2 RELATEDWORK
Meetings technologies: McGregor and Tang [26] devel-
oped a speech-based system that extracts “action items” from
meetings’ transcripts. NoteLook [10] supports note-taking
through analyzing video data obtained from cameras in con-
ference rooms, while [40] facilitates speaking time man-
agement. While textual support or audio-visual cues (e.g.,
prosody [9, 19]) received extensive attention, body language
cues (e.g., gestures [34, 42]) have not been widely studied.
Mobile and wearables: Various technologies emerged that
monitor people’s psycho-physiological [21, 33] and behav-
ioral [3] aspects. Smartphones and smartwatches [33], ear-
ables [22] and various other wearable devices are now fully

Table 1: Data collected from our system.

Device Sensor Data

Phone Accelerometer 𝑝_𝑎𝑐𝑐 = {𝑝_𝑎𝑐𝑐𝑥 , 𝑝_𝑎𝑐𝑐𝑦, 𝑝_𝑎𝑐𝑐𝑧 }
Gyroscope 𝑝_𝑔𝑦𝑟 = {𝑝_𝑔𝑦𝑟𝑥 , 𝑝_𝑔𝑦𝑟𝑦, 𝑝_𝑔𝑦𝑟𝑧 }

Watch
Accelerometer 𝑤_𝑎𝑐𝑐 = {𝑤_𝑎𝑐𝑐𝑥 ,𝑤_𝑎𝑐𝑐𝑦,𝑤_𝑎𝑐𝑐𝑧 }
Gyroscope 𝑤_𝑔𝑦𝑟 = {𝑤_𝑔𝑦𝑟𝑥 ,𝑤_𝑔𝑦𝑟𝑦,𝑤_𝑔𝑦𝑟𝑧 }
Heart rate 𝑤_ℎ𝑟

Earables Accelerometer 𝑒_𝑎𝑐𝑐 = {𝑒_𝑎𝑐𝑐𝑥 , 𝑒_𝑎𝑐𝑐𝑦, 𝑒_𝑎𝑐𝑐𝑧 }
Gyroscope 𝑒_𝑔𝑦𝑟 = {𝑒_𝑔𝑦𝑟𝑥 , 𝑒_𝑔𝑦𝑟𝑦, 𝑒_𝑔𝑦𝑟𝑧 }

– Audio features 𝑎_𝑝𝑜𝑤𝑒𝑟 , 𝑎_𝑧𝑐𝑟
Audio transcript 𝑎_𝑠𝑐𝑟𝑖𝑝𝑡

equipped with sensors that make it possible to obtain multi-
modal datasets [11]. For example, Gaggioli et al. [16] em-
ployed electrocardiogram sensors, wirelessly connected to
smartphones, to detect stress. Mirjafari et al. [29] investi-
gated workers’ job performance from both smartphones and
wearables. While such devices have been extensively used
to study people’s psychological and behavioral aspects, they
have not been widely employed in the context of meetings.

3 KAIROS SYSTEM
Our system consists of three components (Figure 1): (a) the
mobile application, (b) the smartwatch and earables, and (c)
the web server. Next, we describe each component.

3.1 Multi-modal monitoring of meetings
Mobile application. It is iOS and Android compatible, and
was implemented using a hybrid approach that separates
user interface (UI) elements from sensing. The UI was imple-
mented using HTML5 and JavaScript, while native function-
ality was implemented using Swift and Kotlin for iOS and
Android, respectively. In so doing, we kept the UI elements
consistent on both platforms and optimized the sensor data
collection for each platform independently. The application
collects motion data (𝑝_𝑎𝑐𝑐 and 𝑝_𝑔𝑦𝑟 ) at a sampling rate of
20 Hz, and transmits (acting as a local “server”) the collected
smartwatch’s and earables’ data to our web server.
Smartwatch application.We built a Tizen application that
runs on Samsung Galaxy watches. It collects motion data
(𝑤_𝑎𝑐𝑐 and𝑤_𝑔𝑦𝑟 ) from the watch’s sensors at a sampling
rate of 5 Hz, and heart rate (𝑤_ℎ𝑟 ) from the device’s Pho-
toplethysmography sensor at a sampling rate of 1 Hz. All
three modalities are transmitted to our mobile application
via Bluetooth.
Earables.We used “eSense” [22] and collected motion data
(𝑒_𝑎𝑐𝑐 and 𝑒_𝑔𝑦𝑟 ) from its sensors. The mobile application
scans nearby Bluetooth devices until it finds an “eSense” one,
and broadcasts eSense’s UDID. Upon registration, eSense
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starts data collection, and transmits it to the mobile applica-
tion every 200ms.
Web server. We developed a RESTful web server using the
Python Tornado framework. It exposes an endpoint, which
accepts a device’s identifier, sensor type, and the raw times-
tamped sensor data. To prevent excessive server overloads,
the mobile application transmits each sensor’s data in bulk
every 2 minutes (a threshold decided after testing trials), and
all data is stored in a MongoDB instance. The web server also
contains an “audio broker” service, which records the audio
of a meeting [2]. From it, we obtained a meeting’s recording
and transcribed it using Google’s Speech-to-Text API.

3.2 Setup and study execution
We recruited nine participants to always use our system
in corporate meetings for three weeks. Given the complex
“in-the-wild” nature of our study, we focused on a small-
group [5], and all participants were consented in writing
with strict anonymization in place.

We deployed our mobile application as an APK (Android)
and via TestFlight (iOS), and distributed both watches and
earables.We instructed our participants to wear both types of
device, to install our mobile application in their phones, and
to use it alongside theirWebEx1 meetings (the corresponding
Cisco’s WebEx meeting number was used to join in). Once
the first user logged in, our audio broker joined WebEx via a
calling-in function to obtain the meeting’s audio. At the end
of each meeting, our mobile application prompted a post-
meeting survey comprised of two questions (𝑄𝑝𝑠𝑦𝑐ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙

and 𝑄𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛) on a 1-to-7 Likert scale, which represent our
proxies for meeting success (as detailed in §4.2).

3.3 Data cleaning
In total, we collected data from 55 corporate meetings last-
ing 1,968 minutes, where 135 user sessions (127 sessions
comprised of smartwatch data, and 71 ones of earables data)
were generated in a period of three weeks. Our dataset comes
from a diverse range of meetings with varying duration ( ),
hours of day ( ), and days of week ( ). Meetings, on av-
erage, lasted for about 36 minutes with a minimum of three
and a maximum of nine participants in each meeting, and
all meetings were conducted during business hours (10am
to 6pm, Mon-Fri). Post-meeting answers distributions were
slightly skewed towards positive values (𝜇𝑄𝑝𝑠𝑦𝑐ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙

= 5.80
), 𝜇𝑄𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

= 5.68 ).
To prepare our multi-modal dataset for further analyses,

we first grouped the data for each participant in eachmeeting
and aligned their timestamps. For each sensor data (Table 1),
we standardized its value by subtracting it from its average

1Cisco WebEx: https://www.webex.com/

and dividing it by its standard deviation (i.e., (𝑥 − 𝜇𝑥 )/𝜎𝑥 ), en-
suring comparable values. We filled out missing data points
for each feature with the average value of that feature over
the whole dataset [38]; any missing data were due to par-
ticipants not wearing the watch and/or earables at all times
(due to the “in-the-wild” nature of our experiment).

4 STUDYING MEETING SUCCESS
4.1 Proxies for body cues
Using the collected dataset (Table 1), we designed six met-
rics based on the literature that captured body language
cues [15, 21, 28, 34], and tested whether they were predic-
tive of a meeting’s success. The notation 𝜇𝑓 refers to the
average values of a given sensor feature 𝑓 . We computed the

magnitude of the vector |𝑘𝑚 | =
√
𝑘𝑥

2 + 𝑘𝑦2 + 𝑘𝑧2, for inertial
measurement unit (IMU) sensors, which measure inertial
data where 𝑘 ∈ {𝑝_𝑎𝑐𝑐, 𝑝_𝑔𝑦𝑟, 𝑤_𝑎𝑐𝑐, 𝑤_𝑔𝑦𝑟, 𝑒_𝑎𝑐𝑐, 𝑒_𝑔𝑦𝑟 }.

Vibrancy. Previous research found that vibrancy in speech is
highly related to engagement [15]. We extracted two widely
used features from audio [32], and partitioned them into
1-second windows. These are the root-mean-square power
(𝑎_𝑝𝑜𝑤𝑒𝑟 ), and the zero-crossing rate (𝑎_𝑧𝑐𝑟 ). We computed
𝑀𝑣𝑖𝑏𝑟𝑎𝑛𝑐𝑦 from the averaged values of these two features
(𝑀𝑣𝑖𝑏𝑟𝑎𝑛𝑐𝑦 = 𝜇𝑎_𝑝𝑜𝑤𝑒𝑟 + 𝜇𝑎_𝑧𝑐𝑟 ). A larger 𝜇𝑎_𝑝𝑜𝑤𝑒𝑟 suggests
that the audio contains more vibrant conversations, and a
larger 𝜇𝑎_𝑧𝑐𝑟 value suggests a cleaner signal (i.e., a more
speech-related signal) [8]. Hence, a larger 𝑀𝑣𝑖𝑏𝑟𝑎𝑛𝑐𝑦 value
indicates a more conversational meeting.

Multi-tasking. People often use their mobile phones while
taking the meeting call from another device. This might en-
tail a positive contribution (e.g., viewing meeting-related
files) or a less participatory approach (e.g., checking e-mails)
[31]. To capture this, we computed 𝑀𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘𝑖𝑛𝑔 using the
mobile IMU sensor readings, which detect the phone’s move-
ments (𝑀𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘𝑖𝑛𝑔 = 𝜇𝑝_𝑎𝑐𝑐𝑚+𝜇𝑝_𝑔𝑦𝑟𝑚 ). The larger its value,
the more the phone has been moved around.

Heart rate. Past work has linked lower heart rates with fo-
cus and various states of consciousness (e.g., being awake) [18,
20, 21]. We computed𝑀ℎ𝑟 from the average heart rate cap-
tured by the smartwatch (𝑀ℎ𝑟 = −𝜇𝑤_ℎ𝑟 ). The larger its value,
the lower the heart rate.

Head movement. People usually use body language to
convey their (dis)agreement [34]. It is known that head
gestures (e.g., nodding and shaking) are highly related to
head rotations [28]. We computed 𝑀ℎ𝑒𝑎𝑑 as the averaged
magnitude of gyroscope readings obtained from earables
(𝑀ℎ𝑒𝑎𝑑 = 𝜇𝑒_𝑔𝑦𝑟𝑚 ). The larger its value, the higher the num-
ber of head movements.

https://www.webex.com/


HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom Choi et al.

Postures. Various postures are related to people’s attitudes
during meetings [24]. Previous work reported that earable’s
acceleration data are more predictive of physical activity (i.e.,
postures) than its gyroscope data [28]. We defined𝑀𝑝𝑜𝑠𝑡𝑢𝑟𝑒𝑠 ,
which captures changes in posture, from the average magni-
tude of earables accelerometer readings (𝑀𝑝𝑜𝑠𝑡𝑢𝑟𝑒𝑠 = 𝜇𝑒_𝑎𝑐𝑐𝑚 ).
The larger its value, the more changes in posture.

Handmovement. People also express themselveswith hand
motions [34]. In literature, smartwatch IMU sensors are typ-
ically used to capture hand gestures [28]. We computed
𝑀ℎ𝑎𝑛𝑑𝑠 by summing the averaged magnitudes of the IMU sen-
sor readings obtained from smartwatches (𝑀ℎ𝑎𝑛𝑑𝑠 = 𝜇𝑤_𝑎𝑐𝑐𝑚+
𝜇𝑤_𝑔𝑦𝑟𝑚 ). The larger its value, the more one has moved hands
and wrists.

Our metrics are grounded in past work. However, they
might not be exhaustive and universal as they could be in-
fluenced by the diversity of meetings, or even cultures. That
is why we tested the extent to which they are predictive of
success.

4.2 Self-reported success scores
We defined a meeting “success” score 𝛾 from self-reports
(§3.2), and used it as the outcome variable. This score has
been previously validated in a large-scale crowdsourcing
study [13], and is independent from the sensor readings as
it uses meeting participants’ self-reported answers. In that
previous study, we administered a 28-item questionnaire to
363 individuals whose answers were statistically analyzed
through Principal Component Analysis (PCA). We found
that two factors are sufficient to mostly capture whether
a meeting is successful or not: (a) the extent to which par-
ticipants felt listened during the meeting or motivated to
be involved (𝑄𝑝𝑠𝑦𝑐ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ), and (b) the extent to which the
meeting had a clear purpose and structure (𝑄𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛). Using
the loading factors of the first two components from the PCA
analysis in [13] and the self-reports, we computed an aggre-
gated score𝛾 of each attendee as:𝛾 = (0.759 ·𝑄𝑝𝑠𝑦𝑐ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ) +
(0.673 ·𝑄𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛). We binarized each 𝛾 using the median 𝛾
computed across all meetings’ 𝛾 scores of a given attendee,
and assigned them to positive (𝛾 > 𝛾 ) and negative (𝛾 < 𝛾 )
classes. Given each attendee’s own rating, the choice of the
median served as a representative way to discriminate the
two classes.

4.3 Predicting success from body cues
We deployed a Random Forest (RF) model, which was the
best predictive compared to SVM (69% AUC) and Logistic
Regression (68% AUC) to predict our binary outcome vari-
able (success) from the six metrics, while controlling for the
hour of day (encoded using one-hot encoding) and day of
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Figure 2: (a) AUCs of 𝑅𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 , 𝑅ℎ𝑒𝑎𝑑 , and 𝑅𝑏𝑜𝑑𝑦 models,
and (b) 𝑅𝑏𝑜𝑑𝑦 model features importance (best inter-
preted in a comparative way); Head movements were
twice as important as hand movements.

the week. We refer to the RF model including all six body
cues metrics as 𝑅𝑏𝑜𝑑𝑦 . We measured performance using the
area under curve (AUC) metric, and found the best RF model
using a grid search algorithm. This algorithm searched it-
eratively the model’s hyperparameters, employed a 5-fold
cross-validation, and obtained an AUC for each classifier; we
chose the RF classifier with the highest AUC.
Our best performing 𝑅𝑏𝑜𝑑𝑦 model achieved 79% AUC. In-

specting its features (Figure 2b), we found that 𝑀ℎ𝑒𝑎𝑑 was
the most predictive feature, suggesting that head gestures
were highly related to success;𝑀ℎ𝑎𝑛𝑑𝑠 , which captured hand
movements, was the next most prominent one; this was
then followed by𝑀𝑝𝑜𝑠𝑡𝑢𝑟𝑒𝑠 , which captured changes in pos-
ture. Surprisingly,𝑀𝑣𝑖𝑏𝑟𝑎𝑛𝑐𝑦 was the least predictive metric.
We speculate that, given the format of corporate meetings,
not everyone might get the chance to speak up and con-
tribute [31], and, as such,𝑀𝑣𝑖𝑏𝑟𝑎𝑛𝑐𝑦 was partly compromised.

We ascertained𝑅𝑏𝑜𝑑𝑦 ’s predictions by comparing it against
a model predicting success from a meeting’s emotional con-
tent rather than body cues. To capture that content, we de-
fined𝑀𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 , which measured the sentiment of the words
used in a meeting. This choice was grounded on previous
findings that established a significant relationship between
positive emotions and productivity [6, 23, 25]. It is calculated
as the fraction of positive (𝑛_𝑝𝑜𝑠) over positive and nega-
tive (𝑛_𝑛𝑒𝑔) words in the meeting’s transcript (𝑎_𝑠𝑐𝑟𝑖𝑝𝑡 ): the
larger its value, the more positive the meeting’s sentiment.
To categorize words, we used a bag-of-words technique upon
the NRC Emotion Lexicon [30]. Using 𝑀𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 , we built
a 𝑅𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 model to predict success. For comparability, in-
stead of using our 𝑅𝑏𝑜𝑑𝑦 model with all six metrics, we se-
lected its most predictive feature (𝑀ℎ𝑒𝑎𝑑 ) and built a 𝑅ℎ𝑒𝑎𝑑
model. This ensured that any difference between 𝑅𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡

and 𝑅ℎ𝑒𝑎𝑑 performance would not be attributed to the num-
ber of features. We obtained 68% AUC for 𝑅𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 , and 73%
AUC for 𝑅ℎ𝑒𝑎𝑑 (Figure 2a). This translated into a 5% gain in
the model trained with simply head movements compared
to the model trained with emotional content, suggesting that
head movements were more predictive than content.
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4.4 Three typical phases in a meeting
While our best performing model reliably predicts an entire
meeting’s success, zooming into a meeting allows us to un-
derstand its temporal dynamics as it unfolds. To this end, we
set out to explore the moments that contribute to a meeting’s
success, and the relevance of body cues in them.
We divided the original dataset of the 55 meetings into

training (80%) and validation (20%) sets. For illustration pur-
poses, Figure 3 reports 10 meetings from the validation set.
Each row represents a meeting, and each cell represents a
5-min window2. For each 5-min window 𝑖 in a given meeting,
we defined two metrics:
𝑧𝑠𝑢𝑐𝑐𝑒𝑠𝑠 : We computed the probability 𝑝𝑖 of the window
contributing positively to success3, and did so with the best
performing model (𝑅𝑏𝑜𝑑𝑦). We then transformed each 𝑝𝑖 into
its 𝑧-score 𝑧𝑖𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =

𝑝𝑖−𝜇𝑝
𝜎𝑝

, where 𝜇𝑝 and𝜎𝑝 are themean and
variance of the probabilities 𝑝𝑖 ’s across all windows. 𝑧𝑖𝑠𝑢𝑐𝑐𝑒𝑠𝑠
represents window 𝑖’s contribution to success (depicted with
a proportional color in Figure 3).
𝑧𝑏𝑜𝑑𝑦 :We computed a 𝑧-score for each𝑏𝑜𝑑𝑦metric as 𝑧𝑖

𝑏𝑜𝑑𝑦
=

𝑥𝑖
𝑏𝑜𝑑𝑦

−𝜇𝑏𝑜𝑑𝑦
𝜎𝑏𝑜𝑑𝑦

, where 𝑏𝑜𝑑𝑦 ∈ {Head, Hand, Postures, Heart rate,
Multitasking, Vibrancy}, 𝑥𝑖

𝑏𝑜𝑑𝑦
is the 𝑏𝑜𝑑𝑦’s value in window

𝑖 , and 𝜇𝑏𝑜𝑑𝑦 and 𝜎𝑏𝑜𝑑𝑦 are the mean and variance of 𝑥𝑏𝑜𝑑𝑦 ’s
values across all windows.

To ease the interpretation of the 𝑧-score values, consider
that a 𝑧-score value of 2 means that the original value was 2
standard deviations above the mean, and a 𝑧-score value of
-2 means that it was 2 standard deviations below.

These two metrics work under the assumption that the
model trained on an entire meeting reliably transfers on
smaller temporal windows of it. That assumption appeared to
be experimentally reasonable as we found that the predicted
success for an entire meeting highly correlated with the
predicted success averaged across all the 5-min windows of
that meetings (𝜌 = 0.88).
We labeled the 5-min windows as peaks, where 𝑧𝑠𝑢𝑐𝑐𝑒𝑠𝑠

was positive, or valleys, where 𝑧𝑠𝑢𝑐𝑐𝑒𝑠𝑠 was negative. To un-
derstandwhat happened during the peaks and the valleys, we
conducted a thematic analysis on these windows.We listened
to the audio, read the transcripts, and annotated relevant
statements using open coding [4]. We then examined these
annotations using axial coding to identify relationships be-
tween them, and to ultimately extract themes. We reviewed
the extracted themes in a recursive manner [4], with an em-
phasis on meeting success. We identified the three typical
2Spearman’s rank correlation was computetd between our model’s success
prediction on an entire meeting and its success prediction on varying set of
window sizes. The 5-min window yielded the highest correlation (𝑝 = 0.74).
3The probability of success is computed by taking the fraction of trees in
the model that classify the window as positive contribution to success.
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Figure 3: Heatmap of the 5-min windows contribution
to success (𝑧𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ) across the ten meetings in the val-
idation set. The 𝑧-scores greater than zero (blue) and
lower than zero (red) represent positive and negative
contribution, respectively. Points with no data (gray)
indicate a meeting’s ending time. The 𝜇𝛾 denotes the
meeting success score averaged across the attendees
of a given meeting.

phases in a meeting that impacted its success (explained
next), and named them: (i) initiation, (ii) collective discus-
sions, and (iii) turning points, marked with green, purple, and
yellow dotted boxes in Figure 3.
Initiation. This corresponds to the initial period, which in-
cludes actions such as setting up cameras and microphones,
and periods in which participants could be muted. We ob-
served the average 𝑧𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (-1.03) to fall below 1 standard
deviation from the mean, suggesting that a large initiation
window negatively contribute to success. We also found that
vibrancy and heart rate were under-expressed (both 𝑧𝑉𝑖𝑏𝑟𝑎𝑛𝑐𝑦

and 𝑧𝐻𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒 were < -1) in six out ten windows of this phase,
indicating the presence of large periods of silence and di-
verse physiological states [18, 20, 21].
Collective discussions.We observed that the central parts
of most meetings typically unfolded into two ways: as a
presentation phase, or as a discussion phase. A presentation
phase consists of one person talking, while a discussion phase
consists ofmultiple people having a conversation. Both agree-
ments (e.g., “okay”, “sounds good” ) and disagreements (e.g.,
“that’s right, but I mean ...” ) were frequent in these two phases,
and our model associated these collective discussion periods
[31] with higher contribution to success (the average 𝑧𝑠𝑢𝑐𝑐𝑒𝑠𝑠
is 0.94). We found that vibrancy (𝑧𝑉𝑖𝑏𝑟𝑎𝑛𝑐𝑦 > 1) was over-
expressed in seven out of fourteen windows of this phase,
and the three metrics of head (𝑧ℎ𝑒𝑎𝑑 > 1), hand (𝑧ℎ𝑎𝑛𝑑 > 1), and
postures (𝑧𝑝𝑜𝑠𝑡𝑢𝑟𝑒𝑠 > 1) were over-expressed in twelve out of
fourteen windows of this phase. This suggests a prolonged
period of conversational and animated interactions, confirm-
ing that people’s active bodily engagement contributes to
success.
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Turning points. Some meetings had turning points (e.g.,
the topic changed, or a latecomer joined). For example, at
the 4th window ofMeeting ID #4, one participant tried to end
the call, but a question was immediately raised. By listening
to the audio, we found that these periods stimulated atten-
dees to (re)focus. Our model predicted the turning points
windows as positively contributing to a meeting’s success
with an average 𝑧𝑠𝑢𝑐𝑐𝑒𝑠𝑠 of 0.92. We found that no body cue
metric was over-expressed or under-expressed except the
head movements in one out of five windows of this phase.

5 CONCLUSION
In our daily lives, body cues transmit a host of information
to others, signaling our mood, attention, and emotions. Meet-
ings are no exception to this. While we are attuned to such
body signals during in-person meetings, these very same
signals might go unnoticed during virtual ones. We collected
a multi-modal dataset during virtual meetings, and showed
that body cues are predictive of a meeting’s success, even
more than the meeting’s emotional content, and that our
six proxies for body cues essentially captured a meeting’s
initiation, collection discussions, and turning points; three
typical meeting phases whose presence (or absence) greatly
mattered for success.

From a practical standpoint, our work offers a deployable
system that captures meeting success also from body cues,
and generates analytics as a meeting unfolds; this is central
to knowledge workers’ productivity who spend a significant
amount of their work time in meetings [39]. As of immediate
practical use, KAIROS can be integrated with MeetCues [2],
which is a companion platform for Cisco WebEx. MeetCues
allows participants to engage during a meeting, and reflect
on their experience through visual and interactive features.
By integrating our system with MeetCues, we could im-
prove participants’ experience with three types of feedback:
i) visual (e.g., aggregated body cues [35]), ii) auditory (e.g.,
manipulating audio features [14]), or even iii) haptics deliv-
ered on smartwatches [33]. Furthermore, we foresee that our
system could benefit various types of meetings such as town
halls or all-hands meetings. In these particular settings, as
one-to-many or many-to-many conversations are natural
forms of communication, our system could provide analyt-
ics to drive the course of a meeting (e.g., revise a meeting’s
agenda on the fly, if positive bodily engagement is lacking).
Our study looks at the problem of capturing body cues

associated with meeting success, particularly in a period
of the COVID-19 pandemic during which remote working
is at its peak [17]. The current work has, however, limita-
tions that call for future research efforts in the following
areas. First, larger deployments would allow us to capture

a wider variety of factors to control for (e.g., number of
participants, topics, types of meeting), and, as such, gener-
alize our findings. This leads us to our second limitation,
which concerns the ground truth. While the meeting suc-
cess score (ground truth) comes from a previous large-scale
crowdsourcing study [13], future studies could explore causal
relationships between the objective success of a meeting
and participants’ self-reported scores; this would further
clarify the generalizability of our findings. The third limita-
tion concerns the comparison of our model (𝑅𝑏𝑜𝑑𝑦) against
the emotional content (𝑅𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 ) of a meeting. While we
used standard NLP methods (e.g., bag-of-words to extract
sentiment), our ongoing work includes new NLP tools for
scoring conversations in terms of types of social conversa-
tions [12, 36], and of empathy [43], which may well be used
as alternative baseline models. The fourth limitation deals
with privacy considerations. The analytics extracted from
earables come with privacy concerns, yet KAIROS was built
in a way that meeting participants could share what they
felt comfortable to share. Furthermore, even if not shared,
analytics based on body cues could create awareness. For ex-
ample, they could be privately used by a meeting participant
to reflect on how (s)he is likely to be perceived. Addition-
ally, we foresee that our system would be used to provide
analytics and interventions at a meeting/organizational level
(aggregated) rather than on an individual level. Finally, our
findings are based on sensed data from smartphones, smart-
watches, and earable devices. Future studies could enrich
these sensed modalities through camera-based head motion
and facial gesture detection (bounded by users’ willingness
to share their video streams) [1]. Similarly, monitoring ap-
plications on work laptops could be used to track the types
of task that are actually performed in real-time [21].
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nication in business negotiations and business meetings. International
Letters of Social and Humanistic Sciences 62 (2015), 62–72.

[35] Chao Ying Qin, Marios Constantinides, Luca Maria Aiello, and Daniele
Quercia. 2020. HeartBees: Visualizing crowd affects. In Proc. of the VIS
Arts Program. IEEE, 1–8.

[36] Alexander Robertson, Luca Maria Aiello, and Daniele Quercia. 2019.
The language of dialogue is complex. In Proceedings of the International
AAAI Conference on Web and Social Media, Vol. 13. 428–439.

[37] Steven G. Rogelberg, Joseph A. Allen, Linda Shanock, Cliff Scott, and
Marissa Shuffler. 2010. Employee satisfaction with meetings: A con-
temporary facet of job satisfaction. Human Resource Management 49,
2 (2010), 149–172.

[38] Peter Schmitt, Jonas Mandel, and Mickael Guedj. 2015. A comparison
of six methods for missing data imputation. Journal of Biometrics &
Biostatistics 6, 1 (2015), 1.

[39] Yolande Strengers. 2015. Meeting in the global workplace: Air travel,
telepresence and the body. Mobilities 10, 4 (2015), 592–608.

[40] Diane Tam, Karon E. MacLean, Joanna McGrenere, and Katherine J.
Kuchenbecker. 2013. The design and field observation of a haptic
notification system for timing awareness during oral presentations. In
Proc. of the ACM Conference on Human Factors in Computing Systems.
1689–1698.

[41] John Tang et al. 2012. Time travel proxy: Using lightweight video
recordings to create asynchronous, interactive meetings. In Proc. of the
ACM Conference on Human Factors in Computing Systems. 3111–3120.

[42] Nicole Torres and Joep Cornelissen. 2019. When you pitch an idea,
gestures matter more than words. Harvard Business Review (2019).

[43] Ke Zhou, Luca Maria Aiello, Sanja Scepanovic, Daniele Quercia, and
Sara Konrath. 2021. The language of situational empathy. Proc. of the
ACM on Human-Computer Interaction 1, CSCW (2021), 1–19.


	Abstract
	1 Introduction
	2 Related Work
	3 KAIROS SYSTEM
	3.1 Multi-modal monitoring of meetings
	3.2 Setup and study execution
	3.3 Data cleaning

	4 Studying meeting success
	4.1 Proxies for body cues
	4.2 Self-reported success scores
	4.3 Predicting success from body cues
	4.4 Three typical phases in a meeting

	5 Conclusion
	6 Acknowledgments
	References

