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Classification fundamentals



Classification: definition

Given

* a collection of class labels
* acollection of data objects labelled with a class label

Find a descriptive profile of each class, which will allow the
assignment of unlabeled objects to the appropriate class



Definitions

Training set
Collection of labeled data objects used to learn the classification model

Test set
Collection of labeled data objects used to validate the classification model



NouhkwnheE

Classification techniques

Decision trees

Classification rules

Association rules

Neural Networks

Naive Bayes and Bayesian Networks
k-Nearest Neighbours (k-NN)
Support Vector Machines (SVM)



Decision trees



Example of decision tree

Tid Refund Marital Taxable 5’0 //tt/f"‘g Altributes
Status  Income Cheat S
// !

1 |Yes Single 125K No L 'l
2 |No Married |100K No Refund ||l
3 |No |Single |70K  |No Yy wéo '
4 |Yes Married |120K No NO MarSt
> |No Divorced | 95K res ‘ Single, P)%orced \’I‘arried
6 No Married |60K No
7 |Yes Divorced |220K No TaxInc NO
8 |No Single  |85K Yes < 80’K/ \> 80K
9 [No Married |75K No NO YES
10 |No Single 90K Yes

Training Data Model: Decision Tree

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Another example of decision tree

Tid Refund Marital
Status

© 00 N oo g b~ w N P

[EEN
o

Yes
No
No
Yes
No
No
Yes
No
No

No

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married

Single

Taxable
Income Cheat
125K No
100K No
70K No
120K No
95K Yes
60K No
220K No
85K Yes
75K No
90K Yes

MarSt

Marrijy

NO

Single,

\%40 rced

Refund

Ye:s/

NO

\N(‘)

TaxiInc

< 80’K/

NO

\> 80K

YES

There could be more than one tree that

fits the same data!

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Decision tree induction

Many algorithms to build a decision tree

Hunt’s Algorithm (one of the earliest)
CART

ID3, C4.5, C5.0

SLIQ, SPRINT

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Decision Tree Based Classification

Advantages

Inexpensive to construct

Extremely fast at classifying unknown records

Easy to interpret for small-sized trees

Accuracy is comparable to other classification techniques for many simple

data sets
Disadvantages
accuracy may be affected by missing data

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Evaluation of decision trees

Accuracy = Efficiency

For simple .d.ata§ets, comparable to = Fast model building

other clas.s!flcatlon techniques = Very fast classification
Interpretability Scalabilit

Model is interpretable for small = o>Calabllity

trees = Scalable both in training set

Single predictions are interpretable size and attribute number
Incrementality = Robustness

Not incremental = Difficult management of

missing data



Random Forest

Ensemble learning technique
multiple base models are combined
to improve accuracy and stability
to avoid overfitting

Random forest = set of decision trees

a number of decision trees are built at training time
the class is assigned by majority voting

Bibliography: Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, Springer, 2009




Random Forest

Original Training data

Random subsets

Multiple decision trees

For each subset, a tree is
learned on a random set
of features

Aggregating classifiers

/
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Majority voting

l

Class



Bootstrap aggregation

Given a training set D of n instances, it selects B times a
random sample with replacement from D and trains trees on
these dataset samples

Forb=1,..., B
Sample with replacement n’ training examples, n’<n

A dataset subset D, is generated
Train a classification tree on D,



Random Forest — Algorithm Recap

= Given a training set D of ninstances with p features

= Forb=1, ..., B
=« Sample randomly with replacement 7’ training
examples. A subset D, is generated

= Train a classification tree on D,

= During the tree construction, for each candidate split
= m < p random features are selected (typically m = V)
= the best split is computed among these m features

= Class is assigned by majority voting among the B
predictions



Random Forest

Strong points
higher accuracy than decision trees
fast training phase
robust to noise and outliers
provides global feature importance, i.e. an estimate of
which features are important in the classification

Weak points

results can be difficult to interpret

A prediction is given by hundreds of trees
but at least we have an indication through feature importance



Evaluation of random forests

Accuracy
Higher than decision trees

Interpretability

Model and prediction are not

interpretable

A prediction may be given by hundreds
of trees

Provide global feature importance

an estimate of which features are
important in the classification

Incrementality
Not incremental

= Efficiency
= Fast model building
= Very fast classification

= Scalability

= Scalable both in training set
size and attribute number

m Robustness
s Robust to noise and outliers



K-Nearest Neighbor



Nearest-Neighbor Classifiers

Unknown record

"

0 Requires
— The set of stored records

— Distance Metric to compute
distance between records

— The value of & the number of
nearest neighbors to retrieve

0 To classify an unknown record

— Compute distance to other
training records

— Identify k nearest neighbors

— Use class labels of nearest
neighbors to determine the
class label of unknown record
(e.g., by taking majority
vote)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Definition of Nearest Neighbor
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(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points
that have the k smallest distance to x

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




1 nearest-neighbor

Voronoi Diagram

09t -
08} ° i
07} -
064 -
05} -
04} -
03} -

02F *| o i

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Nearest Neighbor Classification

Compute distance between two points
Euclidean distance

d(p,q)=./=(p,—-q)’

Determine the class from nearest neighbor list
take the majority vote of class labels among the k-nearest neighbors
Weigh the vote according to distance
weight factor, w = 1/d?

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Nearest Neighbor Classification

Choosing the value of k:

If k is too small, sensitive to noise points

If k is too large, neighborhood may include points from
other classes

- +
----------
e’ - e +
4 LY
+ o [N
-—
" -— \‘
4 -— Y
I' *
Y
[ -— [ -—
' -—— ‘
: \
)
+ + -
’—- + | '
] X .
: ++ —
(] ]
(] (]
) ]
[} -— [)
I p— [
[} )
~ _ c o+
[N ']
\‘ -— '
(N o
-_— \‘ -— "
-—
\~~ "'
L] L J
- @ Ceapeee=”® -

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Nearest Neighbor Classification

Scaling issues

Attribute domain should be normalized to prevent distance measures from being
dominated by one of the attributes
Example: height [1.5m to 2.0m] vs. income [S10K to $S1M]

Problem with distance measures

High dimensional data
curse of dimensionality



Evaluation of KNN

Accuracy

Comparable to other classification

techniques for simple datasets
Interpretability

Model is not interpretable

Single predictions can be

"described” by neighbors
Incrementality

Incremental

Training set must be available

= Efficiency
= (Almost) no model building

= Slower classification, requires
computing distances

= Scalability
s Weakly scalable in training set
size

= Curse of dimensionality for
increasing attribute number

m Robustness

= Depends on distance
computation



Bayesian Classification (FINISH
POINT)

Elena Baralis
Politecnico di Torino



Bayes theorem

Let C and X be random variables

P(C,X) = P(C|X) P(X)

P(C,X) = P(X|C) P(C)
Hence

P(C[X) P(X) = P(X|C) P(C)
and also

P(C|X) = P(X|C) P(C) / P(X)



Bayesian classification: Example

Outlook Temperature Humidity Windy Class

sunny hot high false N
sunny  hot high true N
overcast hot high false P
rain mild high false P
rain cool normal false P
rain cool normal true N
overcast cool normal true P
sunny mild high false N
sunny cool normal false P
rain mild normal false P
sunny mild normal true P
overcast mild high true P
overcast hot normal false P
rain mild high true N

From: Han, Kamber,”Data mining; Concepts and Techniques”, Morgan Kaufmann 2006




Bayesian classification: Example

P(sunny|p) = 2/9

P(sunny|n) =3/5

P(overcast|p) =4/9

P(overcast|n) =0

P(p) = 9/14

P(rain|p) = 3/9

P(rain|n) = 2/5

P(n) = 5/14

P(hot|p) = 2/9

P(hot|n) = 2/5

P(mild|p) = 4/9

P(mild|n) = 2/5

P(cool|p) = 3/9

P(cool|n) =1/5

P(high|p) = 3/9

P(high|n) = 4/5

P(normal|p) = 6/9

P(normal|n) =1/5

P(true|p) = 3/9

P(true|n) = 3/5

P(false|p) = 6/9

P(false|n) =2/5

From: Han, Kamber,”Data mining; Concepts and Techniques”, Morgan Kaufmann 2006




Bayesian classification: Example

Data to be labeled
X = <rain, hot, high, false>

For class p

P(X|p)-P(p) =
= P(rain|p)-P(hot|p)-P(high|p)-P(false|p)-P(p) =
3/9:2/9-3/9:6/9:9/14 = 0.010582
For class n

P(X|n)-P(n) =
= P(rain|n)-P(hot|n)-P(high|n)-P(false|n)-P(n) =
2/5-2/5-4/5-2/5-5/14 = 0.018286

From: Han, Kamber,”Data mining; Concepts and Techniques”, Morgan Kaufmann 2006




Evaluation of Naive Bayes Classifiers

Accuracy = Efficiency
Similar or lower than decision trees

Naive hypothesis simplifies model = Fast model building

Interpretability = Very fast classification
Model and prediction are not = Scalability
interpretable = Scalable both in training set

The weights of contributions in a single

prediction may be used to explain size and attribute number

Incrementality = Robustness
Fully incremental = Affected by attribute
Does not require availability of correlation

training data



Support Vector Machines



Support Vector Machines
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Find a linear hyperplane (decision boundary) that will separate the data

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Support Vector Machines
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One Possible Solution

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Support Vector Machines
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Another possible solution

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Support Vector Machines
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Other possible solutions

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Support Vector Machines
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Which one is better? B1 or B2?
How do you define better?

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Support Vector Machines

Bl
O
O O
O
O
B2 5\\ ............. O
[ R S N
. ' b22
|
. . .
O L many
| [
b

12
Find hyperplane maximizes the margin => B1 is better than B2

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Nonlinear Support Vector Machines

What if decision boundary is not linear?

12

10+ +

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Nonlinear Support Vector Machines

Transform data into higher dimensional space

x 10"

&
(X, +X,)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Evaluation of Support Vector Machines

Accuracy m EfﬁCiency
Among best performers = Model building requires
Interpretability significant parameter tuning
Model and prediction are not = Very fast classification

interpretable

Black box model u Scalablllty
Incrementality = Medium scalable both in
Not incremental training set size and attribute
number

m Robustness
s Robust to noise and outliers



Artificial Neural Networks

Elena Baralis
Politecnico di Torino



Artificial Neural Networks

Inspired to the structure of the human brain
Neurons as elaboration units
Synapses as connection network

Biological Neuron




Artificial Neural Networks

Different tasks, different architectures

image understanding: convolutional NN (CNN) time series analysis: recurrent NN (RNN)

convolutional layers
brother  plays volleyball

feed forward NN (% é é é
id il % — — —

A

pI’OI‘lOl.lI'l noun Verb HOU[I

numerical vectors classification: feed forward NN (FFNN) denoising: auto-encoders




Feed Forward Neural Network

Input layer Hidden layer Output layer

—_—
—_—
input vector (x;) output vector
—_—
A
—_—

|

neuron weighted connection

(w;)



Structure of a neuron

Input
vector X

output y

Weight Weighted Activation
vector w sum function

From: Han, Kamber,”Data mining; Concepts and Techniques”, Morgan Kaufmann 2006




Convolutional Neural Networks

= Allow automatically extracting features from images and
performing classification

convolutional layers

feed forward NN

e )
" 10§54

predicted class
with confidence

input image

Convolutional Neural Network (CNN) Architecture



Convolutional Neural Networks

convolutional layers

feed forward NN

low level features abstract features

A

feature extraction




Convolutional Neural Networks

convolutional layers

feature extraction

feed forward NN

low level features

classification,
with softmax activation

abstract features



Convolutional Neural Networks

Semantic segmentation CNNs

allow assigning a class to each pixel of the input image

composed of 2 parts
encoder network: convolutional layers to extract abstract features
decoder network: deconvolutional layers to obtain the output image from the extracted
features

Convolutional Encoder-Decoder

' |||| Pooling Indices

RGB Image B conv + Batch Normalisation + RelU . Segme ntation
I Focling I Upsampling Softmax

Output

SegNet neural network



Word Embeddings (Word2Vec)

m  Word embeddings associate words to n-dimensional vectors

= trained on big text collections to model the word distributions in different sentences and
contexts

m able to capture the semantic information of each word

s words with similar meaning share vectors with similar characteristics

input word \
1 man e(man)=[el,e2,e3]
el O
e2
man .3 king e(king)=[el’,e2’,e3"]

! v

embedding vector



Word Embeddings (Word2Vec)

= Since each word is represented with a vector, operations among words (e.g.
difference, addition) are allowed

A

e

man
®

i king

A

pd

o
Zl king-man

pd

A

e .

king-man



Word Embeddings (Word2Vec)

= Semantic relationiships among words are captured by vector positions

man
woman . ®

l king-man
king

@

ueen-woman l

queen ! 1 /—r
king - man = queen - woman
king - man + woman = queen




Model evaluation

Elena Baralis
Politecnico di Torino



Model evaluation

Methods for performance evaluation
Partitioning techniques for training and test sets

Metrics for performance evaluation
Accuracy, other measures

Techniques for model comparison
ROC curve



Methods for performance evaluation

Objective

reliable estimate of performance
Performance of a model may depend on other factors

besides the learning algorithm
Class distribution
Cost of misclassification
Size of training and test sets

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Accuracy
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Learning curve

0 Learning curve shows
how accuracy changes
with varying training
sample size

0 Requires a sampling

{  schedule for creating

learning curve:

/ | 0 Arithmetic sampling
* (Langley, et al)

0 Geometric sampling
(Provost et al)

| Effect of small sample size:
S o ¢ n* - Biasin the estimate
Sample Size . .
- Variance of estimate

—_
[
—_
O

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Partitioning data

Several partitioning techniques
holdout
cross validation

Stratified sampling to generate partitions
without replacement

Bootstrap
Sampling with replacement



Methods of estimation

Partitioning labeled data for training, validation and test

Several partitioning techniques

holdout
cross validation

Stratified sampling to generate partitions
without replacement

Bootstrap

Sampling with replacement



Holdout

Fixed partitioning
Typically, may reserve 80% for training, 20% for test
Other proportions may be appropriate, depending on the dataset size

Appropriate for large datasets

may be repeated several times
repeated holdout



Cross validation

Cross validation
partition data into k disjoint subsets (i.e., folds)
k-fold: train on k-1 partitions, test on the remaining one
repeat for all folds
reliable accuracy estimation, not appropriate for very large datasets

Leave-one-out

cross validation for k=n
only appropriate for very small datasets



Model performance estimation

Model training step

Building a new model

Model validation step

Hyperparameter tuning
Algorithm selection

Model test step

Estimation of model performance



Model performance estimation

Typical dataset size

Training set 60% of labeled data
Validation set 20% of labeled data
Test set 20% of labeled data

Splitting labeled data

Use hold-out to split in
training+validation
test

Use cross validation to splitin
training
validation



Metrics for model evaluation

Evaluate the predictive accuracy of a model

Confusion matrix
binary classifier

PREDICTED CLASS

Class=Yes | Class=No

ACTUAL Class=Yes a b a: TP (true positive)

CLASS b: FN (false negative)

Class=No C d c: FP (false positive)
d: TN (true negative)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Accuracy

Most widely-used metric for model evaluation

Number of correctlyclassified objects

ACCUraCY == mber of classified objects

Not always a reliable metric



Accuracy

For a binary classifier

PREDICTED CLASS

Class=Yes | Class=No
Class=Yes a b
ACTUAL (TP) (FN)
CLASS Class=No C d
(FP) (TN)
a+d TP+TN
Accuracy =

atb+c+d TP+TN+FP+FN

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Limitations of accuracy

Consider a binary problem
Cardinality of Class 0 = 9900
Cardinality of Class 1 =100

Model

() > class O
Model predicts everything to be class 0
accuracy is 9900/10000 =99.0 %

Accuracy is misleading because the model does not
detect any class 1 object



Limitations of accuracy

Classes may have different importance

Misclassification of objects of a given class is more important
e.g., ill patients erroneously assigned to the healthy patients class

Accuracy is not appropriate for
unbalanced class label distribution
different class relevance



Class specific measures

m Evaluate separately for each class C

Recall ()= Number of objectscorrectlyassigned to C
Number of objectsbelongingto C

Number of objectscorrectlyassigned to C
Number of objectsassigned toC

Precision (p)=

 Maximize
21p

F - measure (F) =
r+p



Class specific measures

m For a binary classification problem
= 0N the confusion matrix, for the positive class

d

Precision (p) =
a+c

Recall (r) =
a+b

21p 2a
F - measure (F) = =
r+p 2a+b+c

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




ROC (Receiver Operating Characteristic)

Developed in 1950s for signal detection theory to

analyze noisy signals
characterizes the trade-off between positive hits and false alarms

ROC curve plots

TPR, True Positive Rate (on the y-axis)

TPR = TP/(TP+FN)
against
FPR, False Positive Rate (on the x-axis)

FPR = FP/(FP + TN)



ROC curve

(FPR, TPR) :

(0,0): declare everything 0ol
to be negative class osl
(1,1): declare everything 07l
to be positive class o6l
(0,1): ideal

True Positive
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From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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True Positive Rate

Using ROC for Model Comparison

= No model consistently

1

T s outperforms the other

0.9 M. -7 e :
N 2 _ _ = M, Is better for
. 7 - small FPR

L ~ I :
- 7 ~ | = M, is better for
' . A
M , s _ large FPR
04} / S | = Area under ROC
03 P | curve
02k Jj // . » Ideal
XA . Area=1.0
|:| | | | 1 1 1

0 01 02 03 04 05 06 07 08 09 1 = Random guess
Falze Positive Hate
Area = 0.5

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Next slides taken from MIT
Course of “Data Science”



There are Three Kinds of Lies

LIES

DAMNED LIES
and

STATISTICS



Humans and Statistics

Human@ind Statistics

i=len( observed )-1

Y (observedi] - predicted]i])
i=0
n—-1 n—2 n—(K-1)

1—( * * L%
n n n

Image of brain © source unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see |https://ocw.mit.edu/help/fag-fair-use/|.




Humans and Statistics

“If you can't prove what you want to prove,
demonstrate something else and®retend®hey are
theBameRhing.@An®he@aze@hatHollowsEhe&ollision
of statistics with the human mind,Hhardly anyone will
notice the difference.” — Darrell Huff

Image of brain © source unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see thtps://ocw.mit.edu/help/faq—fair—use/i.




Anscombe’s Quartet

"Four groups each containing 11 x, y pairs
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Summary Statistics

sSummary statistics for groups identical
° Mean x=9.0
° Meany=7.5
> Variance of x = 10.0
> Variance of y =3.75
o Linear regression model: y =0.5x+ 3

=Are four data sets really similar?



Let’s Plot the Data
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Moral: Use visualization tools to look at the data itself



Lying with Pictures

6.0001 Mean Grade By Gender

4.05

Mean Grade
S

3.85}

3.90
Male Female



Telling the Truth with Pictures

. 6.0001 Mean Grade By Gender

L)

Mean Grade

0

|
Male Female

Moral: Look carefully at the axes labels and scales



Lying with Pictures

./ T ) b =
WELFARE VS:FULL TIME JOBS

101.7M|

B

|

PEOPLE ON PEOPLE WITH A
WELFARE FULL TIME JOB

SOURCE: CENSUS BUREAU 2011

Ews ke

channel

L1 el SMaREIEoiY
Moral: Ask whether the things being compared are actually
comparable

Screenshot of Fox News © 20th / 21st Century Fox. All rights reserved. This content is excluded from
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Garbage In, Garbage Out

“On two occasions | have been asked [by
members of Parliament], ‘Pray, Mr. Babbage,
if you put into the machine wrong figures,
will the right answers come out?’ | am not
able rightly to apprehend the kind of
confusion of ideas that could provoke such a
question.” — Charles Babbage (1791-1871)



- houn's F . .

“there were so many errors they balanced one another, and led to
the same conclusion as if they were all correct.”

Was it the case that the measurement errors are unbiased and
independent of each of other, and therefore almost identically
distributed on either side of the mean?

No, later analysis showed that the errors were not random but
systematic.

“it was the census that was insane and not the colored people.” —
James Freeman Clarke

Moral: Analysis of bad data can lead to dangerous conclusions.



Sampling

sAll statistical techniques are based upon the
assumption that by sampling a subset of a population
we can infer things about the population as a whole

"As we have seen, if random sampling is used, one can
make meaningful mathematical statements about the
expected relation of the sample to the entire
population

"Easy to get random samples in simulations

"Not so easy in the field, where some examples are
more convenient to acquire than others



Non-representative Sampling

=“Convenience sampling” not usually random, e.g.,

o Survivor bias, e.g., course evaluations at end of course or
grading final exam in 6.0002 on a strict curve

> Non-response bias, e.g., opinion polls conducted by mail
or online

"When samples not random and independent, we can
still do things like computer means and standard
deviations, but we should not draw conclusions from
them using things like the empirical rule and central
limit theorem.

=Moral: Understand how data was collected, and
whether assumptions used in the analysis are satisfied.
If not, be wary.
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